Optimal directed searches for continuous gravitational waves

Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.

[1]  Reinhard Prix,et al.  Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data , 2017, 1708.02173.

[2]  B. Schutz,et al.  0 50 40 11 v 2 1 4 Ju l 2 00 5 The generalized F-statistic : multiple detectors and multiple GW pulsars , 2018 .

[3]  Y. Wang,et al.  First search for gravitational waves from known pulsars with advanced LIGO , 2017, 1701.07709.

[4]  Bernard F. Schutz,et al.  Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data , 2016, 1608.08928.

[5]  Sylvia J. Zhu,et al.  Einstein@Home search for continuous gravitational waves from Cassiopeia A , 2016, 1608.07589.

[6]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[7]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[8]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[9]  B. A. Boom,et al.  Comprehensive All-sky Search for Periodic Gravitational Waves in the Sixth Science Run LIGO Data , 2016, 1605.03233.

[10]  Yi-Fu Cai,et al.  Probing the origin of our universe through primordial gravitational waves by Ali CMB project , 2016, Science China Physics, Mechanics & Astronomy.

[11]  Tarun Souradeep,et al.  LIGO-India , 2016 .

[12]  The LIGO Scientific Collaboration,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries , 2016, 1602.03838.

[13]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[14]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[15]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[16]  The LIGO Scientific Collaboration,et al.  Astrophysical Implications of the Binary Black-Hole Merger GW150914 , 2016, 1602.03846.

[17]  D. Keitel Robust semicoherent searches for continuous gravitational waves with noise and signal models including hours to days long transients , 2015, 1509.02398.

[18]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[19]  Yvonne Herz,et al.  A First Course In General Relativity , 2016 .

[20]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[21]  K. Wette Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars , 2015, 1508.02372.

[22]  Jr.,et al.  Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data , 2014, 1410.8310.

[23]  Reinhard Prix,et al.  Postprocessing methods used in the search for continuous gravitational-wave signals from the galactic center , 2014, 1410.5997.

[24]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[25]  N. M. Brown,et al.  Searches for continuous gravitational waves from nine young supernova remnants , 2014 .

[26]  P. Puppo,et al.  Status of advanced ground-based laser interferometers for gravitational-wave detection , 2014, 1411.6068.

[27]  M. Filipović,et al.  ON THE EXPANSION RATE, AGE, AND DISTANCE OF THE SUPERNOVA REMNANT G266.2−1.2 (Vela Jr.) , 2014, 1410.7435.

[28]  K. Wette Lattice template placement for coherent all-sky searches for gravitational-wave pulsars , 2014, 1410.6882.

[29]  Wei Gao,et al.  Descope of the ALIA mission , 2014, 1410.7296.

[30]  D. Keitel,et al.  Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities , 2014, 1409.2696.

[31]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[32]  P. Leaci,et al.  Fully coherent follow-up of continuous gravitational-wave candidates: an application to Einstein@Home results , 2014, 1405.1922.

[33]  Reinhard Prix,et al.  Search for continuous gravitational waves: improving robustness versus instrumental artifacts , 2013, 1311.5738.

[34]  S. Klimenko,et al.  Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. , 2013, Physical review letters.

[35]  J. K. Blackburn,et al.  Gravitational waves from known pulsars: Results from the initial detector era , 2013, 1309.4027.

[36]  H. Lück,et al.  A Third Generation Gravitational Wave Observatory: The Einstein Telescope , 2014 .

[37]  C. Zhang,et al.  CHARACTERISTIC AGE AND TRUE AGE OF PULSARS , 2013 .

[38]  K. Wette,et al.  Flat parameter-space metric for all-sky searches for gravitational-wave pulsars , 2013, 1310.5587.

[39]  J. K. Blackburn,et al.  Directed search for continuous gravitational waves from the Galactic center , 2013, 1309.6221.

[40]  S. Mirshekari Gravitational Waves and Inspiraling Compact Binaries in Alternative Theories of Gravity , 2013, 1308.5240.

[41]  Piotr Jaranowski,et al.  Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars , 2013, 1302.0509.

[42]  K. S. Thorne,et al.  Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data , 2012, Physical Review D.

[43]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[44]  J. Field,et al.  The mechanical and strength properties of diamond , 2012, Reports on progress in physics. Physical Society.

[45]  X. Siemens,et al.  Continuous Gravitational Waves from Isolated Galactic Neutron Stars in the Advanced Detector Era , 2012, 1209.2971.

[46]  B. Owen,et al.  Maximum elastic deformations of relativistic stars , 2012, 1208.5227.

[47]  Warren R. Brown,et al.  BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS , 2012, 1203.6685.

[48]  H. Lück,et al.  The Upgrade of GEO 600 , 2012 .

[49]  M. Shaltev,et al.  Search for Continuous Gravitational Waves: Optimal StackSlide method at fixed computing cost , 2012, 1201.4321.

[50]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[51]  C. Broeck,et al.  All-sky search for periodic gravitational waves in the full S5 LIGO data , 2022 .

[52]  W. Marsden I and J , 2012 .

[53]  H. Lück,et al.  Toward a third generation of gravitational wave observatories , 2011 .

[54]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[55]  J. K. Blackburn,et al.  FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR , 2010, 1006.2535.

[56]  H. Pletsch,et al.  Parameter-space metric of semicoherent searches for continuous gravitational waves , 2010, 1005.0395.

[57]  Benno Willke,et al.  The third generation of gravitational wave observatories and their science reach , 2010 .

[58]  Naoki Seto,et al.  DECIGO and DECIGO pathfinder , 2010 .

[59]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[60]  France,et al.  The European Pulsar Timing Array: current efforts and a LEAP toward the future , 2010, 1003.3405.

[61]  X. Siemens,et al.  Implementation of barycentric resampling for continuous wave searches in gravitational wave data , 2009, 0912.4255.

[62]  David Blair,et al.  Einstein@Home search for periodic gravitational waves in early S5 LIGO data , 2009 .

[63]  S. Burke-Spolaor,et al.  The PULSE@Parkes Project: a New Observing Technique for Long-Term Pulsar Monitoring , 2009, Publications of the Astronomical Society of Australia.

[64]  B. Owen How photon astronomy affects searches for continuous gravitational waves , 2009, 0904.4848.

[65]  K. Kadau,et al.  Breaking strain of neutron star crust and gravitational waves. , 2009, Physical review letters.

[66]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[67]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[68]  R. Prix,et al.  Random template banks and relaxed lattice coverings , 2008, 0809.5223.

[69]  et al,et al.  Einstein@Home search for periodic gravitational waves in LIGO S4 data , 2008, 0804.1747.

[70]  W. Becker Neutron Stars and Pulsars , 2009 .

[71]  L. S. Collaboration All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data , 2008, 0810.0283.

[72]  H. Pletsch,et al.  Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection , 2008, 0807.1324.

[73]  Y. Minenkov,et al.  EXPLORER and NAUTILUS gravitational wave detectors: a status report , 2008 .

[74]  B. Allen,et al.  Blandford's argument: The strongest continuous gravitational wave signal , 2008, 0804.3075.

[75]  C. Broeck,et al.  BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR , 2008, 0805.4758.

[76]  T. Damour Introductory lectures on the Effective One Body formalism , 2008, 0802.4047.

[77]  M. M. Casey,et al.  All-sky search for periodic gravitational waves in LIGO S4 data , 2007, 0708.3818.

[78]  Richard H. Price,et al.  Black Holes , 1997 .

[79]  L. Gottardi,et al.  Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K , 2007, 0705.0122.

[80]  Duncan A. Brown,et al.  Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.

[81]  R. Prix Search for continuous gravitational waves: metric of the multi-detector F-statistic , 2006, gr-qc/0606088.

[82]  The Ligo Scientific Collaboration Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run , 2006, Physical Review D.

[83]  B. Allen,et al.  Designing a Runtime System for Volunteer Computing , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[84]  R. Nan,et al.  Pulsar Observations with Radio Telescope FAST , 2006 .

[85]  E. Phinney,et al.  Laser interferometry for the Big Bang Observer , 2006 .

[86]  Oswaldo D. Miranda,et al.  The Brazilian gravitational wave detector Mario Schenberg: status report , 2006 .

[87]  Naoki Seto,et al.  The Japanese space gravitational wave antenna—DECIGO , 2006 .

[88]  C. Palomba Simulation of a population of gravitational wave-driven neutron stars , 2005 .

[89]  et al,et al.  First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform , 2005, gr-qc/0508065.

[90]  B. Krishnan Wide parameter search for isolated pulsars using the Hough transform , 2005, gr-qc/0506109.

[91]  B. Krishnan,et al.  Improved Stack-Slide Searches for Gravitational-Wave Pulsars , 2005, gr-qc/0505082.

[92]  David P. Anderson,et al.  BOINC: a system for public-resource computing and storage , 2004, Fifth IEEE/ACM International Workshop on Grid Computing.

[93]  B. Stappers,et al.  Strong-Field Tests of Gravity Using Pulsars and Black Holes , 2004, astro-ph/0409379.

[94]  J. Taylor,et al.  Relativistic binary pulsar B1913+16: Thirty years of observations and analysis , 2004, astro-ph/0407149.

[95]  B. Krishnan,et al.  Hough transform search for continuous gravitational waves , 2004, gr-qc/0407001.

[96]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[97]  A. Loeb,et al.  Probing the Spacetime around Sagittarius A* with Radio Pulsars , 2003, astro-ph/0309744.

[98]  Karsten Danzmann,et al.  LISA - An ESA Cornerstone Mission for the Detection and Observation of Gravitational Waves , 2003 .

[99]  Selective readout and back-action reduction for wideband acoustic gravitational wave detectors , 2003, gr-qc/0302012.

[100]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[101]  Yanbei Chen,et al.  Practical speed meter designs for quantum nondemolition gravitational-wave interferometers , 2002, gr-qc/0208049.

[102]  P. Purdue Analysis of a quantum nondemolition speed-meter interferometer , 2002 .

[103]  A. Buonanno,et al.  Signal recycled laser-interferometer gravitational-wave detectors as optical springs , 2001, gr-qc/0107021.

[104]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[105]  Berkeley,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2000, gr-qc/0008026.

[106]  M. Papa,et al.  Searching for continuous gravitational wave signals: the hierarchical Hough transform algorithm , 2000, gr-qc/0011034.

[107]  S. Rowan,et al.  Gravitational Wave Detection by Interferometry (Ground and Space) , 2000, Living reviews in relativity.

[108]  Curt Cutler,et al.  Deformations of accreting neutron star crusts and gravitational wave emission , 2000, astro-ph/0001136.

[109]  M. Papa,et al.  End-to-end algorithm for hierarchical area searches for long-duration GW sources for GEO 600 , 1999, gr-qc/9905018.

[110]  V. Kalogera,et al.  Bounds on neutron-star moments of inertia and the evidence for general relativistic frame dragging , 1999, astro-ph/9903415.

[111]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[112]  Lars Bildsten,et al.  Gravitational Radiation and Rotation of Accreting Neutron Stars , 1998, astro-ph/9804325.

[113]  B. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.

[114]  Bernard F. Schutz,et al.  Searching for periodic sources with LIGO , 1997, gr-qc/9702050.

[115]  G. Vedovato,et al.  The ultracryogenic gravitational-wave detector AURIGA , 1997 .

[116]  S. Dhurandhar,et al.  GRAVITATIONAL WAVES : SOURCES AND DETECTORS , 1996 .

[117]  Price,et al.  The Allegro gravitational wave detector: Data acquisition and analysis. , 1996, Physical review. D, Particles and fields.

[118]  S. Bonazzola,et al.  Gravitational waves from neutron stars , 1996, astro-ph/9605187.

[119]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[120]  Balasubramanian,et al.  Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters. , 1995, Physical review. D, Particles and fields.

[121]  E. Coccia,et al.  First Edoardo Amaldi Conference on Gravitational Wave Experiments , 1995 .

[122]  Ivanov,et al.  High sensitivity gravitational wave antenna with parametric transducer readout. , 1995, Physical review letters.

[123]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[124]  Grishchuk,et al.  Spectra of relic gravitons and the early history of the Hubble parameter. , 1991, Physical review. D, Particles and fields.

[125]  B. Schutz,et al.  On the Analysis of Gravitational Wave Data , 1989 .

[126]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[127]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[128]  M. Zimmermann,et al.  Gravitational waves from rotating and precessing rigid bodies - Simple models and applications to pulsars , 1979 .

[129]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.

[130]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .