An Algorithm to Compute the Inverse Image of a Point With Respect to a Nondeterministic Max-Plus Linear System

Max-plus linear (MPL) systems are often described by a transition function, which models the state evolution of the system, and a measurement function, which binds the measures with the system states. Methods for computing the inverse image of a point w.r.t. the measurement function are particularly interesting in applications where it is desirable to obtain information about the system states based on the output observations. The inverse image of a set w.r.t. a nondeterministic MPL system, called uncertain MPL (uMPL) system, can be computed by using the difference-bound matrices (DBM) approach. In this article, we aim to use an interval analysis to propose a method to compute the inverse image of a point w.r.t. an uMPL system. The algorithm proposed has a lower worst-case complexity compared with the DBM approach as previously proposed in the literature.

[1]  Axel Legay,et al.  Tropical Fourier-Motzkin elimination, with an application to real-time verification , 2013, Int. J. Algebra Comput..

[2]  Ton J.J. van den Boom,et al.  Robust control of constrained max‐plus‐linear systems , 2009 .

[3]  Bart De Schutter,et al.  Computational techniques for reachability analysis of Max-Plus-Linear systems , 2015, Autom..

[4]  Ricardo Katz Max-Plus $(A,B)$-Invariant Spaces and Control of Timed Discrete-Event Systems , 2007, IEEE Transactions on Automatic Control.

[5]  D. Luenberger An introduction to observers , 1971 .

[6]  Geert Jan Olsder,et al.  Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications , 2005 .

[7]  Katarína Cechlárová,et al.  Eigenvectors of interval matrices over max-plus algebra , 2005, Discret. Appl. Math..

[8]  Mehdi Lhommeau,et al.  Conditional reachability of uncertain Max Plus Linear systems , 2018, Autom..

[9]  G. Olsder,et al.  Discrete event systems with stochastic processing times , 1990 .

[10]  Grigori L. Litvinov,et al.  Idempotent Interval Analysis and Optimization Problems , 2001, Reliab. Comput..

[11]  Eric Goubault,et al.  Inferring Min and Max Invariants Using Max-Plus Polyhedra , 2008, SAS.

[12]  Katarína Cechlárová,et al.  Interval systems of max-separable linear equations , 2002 .

[13]  Laurent Hardouin,et al.  A super-eigenvector approach to control constrained max-plus linear systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[14]  L. Hardouin,et al.  Duality and interval analysis over idempotent semirings , 2012, 1306.1129.

[15]  Jean Jacques Loiseau,et al.  Duality Between Invariant Spaces for Max-Plus Linear Discrete Event Systems , 2009, SIAM J. Control. Optim..

[16]  Bertrand Cottenceau,et al.  Interval systems over idempotent semiring , 2009, 1306.1136.

[17]  B. Heidergott Max-plus linear stochastic systems and perturbation analysis , 2006 .

[18]  J.-L. Ferrier,et al.  Interval Analysis in Dioid: Application to Robust Open-Loop Control for Timed Event Graphs , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[19]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[20]  J. Quadrat,et al.  Max-Plus Algebra and System Theory: Where We Are and Where to Go Now , 1999 .

[21]  Ramon E. Moore,et al.  Methods and Applications of Interval Analysis (SIAM Studies in Applied and Numerical Mathematics) (Siam Studies in Applied Mathematics, 2.) , 1979 .

[22]  Kim G. Larsen,et al.  Reachability analysis for timed automata using max-plus algebra , 2012, J. Log. Algebraic Methods Program..

[23]  Isabel Demongodin,et al.  Max-Plus Control Design for Temporal Constraints Meeting in Timed Event Graphs , 2012, IEEE Transactions on Automatic Control.

[24]  Laurent Hardouin,et al.  Particle filters for max plus systems , 2013, 2013 European Control Conference (ECC).

[25]  Bertrand Cottenceau,et al.  Observer Design for $(\max, +)$ Linear Systems , 2010, IEEE Transactions on Automatic Control.

[26]  Bertrand Cottenceau,et al.  Optimal Control for (max, +)-linear Systems in the Presence of Disturbances , 2003, POSTA.

[27]  Laurent Hardouin,et al.  On the Steady-State Control of Timed Event Graphs With Firing Date Constraints , 2016, IEEE Transactions on Automatic Control.

[28]  Bart De Schutter,et al.  Model predictive control for perturbed max-plus-linear systems , 2002, Syst. Control. Lett..

[29]  Bertrand Cottenceau,et al.  Max-plus linear observer: Application to manufacturing systems , 2010, WODES.