Free energy barriers to melting in atomic clusters

We employ an order parameter approach to investigate melting in clusters bound by the Lennard‐Jones potential containing 13, 55, and 147 atoms. We find well‐defined Landau free energy barriers between solidlike and liquidlike states for the two larger clusters. A barrier is also revealed in an approximate analytical calculation using only information derived from the potential energy surface. For the two smaller clusters the order parameters are calculated for a large number of local minima. This helps us to interpret the Landau free energy calculations and to comment upon the suitability of the various order parameters for the cluster melting process. Systematic quenching offers us further insight into melting events for the 55‐atom cluster. Finally, we elaborate further upon the relationships between S‐bends and probability distributions in different ensembles.

[1]  David J. Wales,et al.  Basins of attraction for stationary points on a potential-energy surface , 1992 .

[2]  Berry,et al.  Freezing, melting, spinodals, and clusters. , 1989, Physical review letters.

[3]  Thomas L. Beck,et al.  Solid–liquid phase changes in simulated isoenergetic Ar13 , 1986 .

[4]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[5]  Microcanonical Monte Carlo simulation of the melting behaviour of small clusters , 1992 .

[6]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[7]  F. Grandjean,et al.  The time domain in surface and structural dynamics , 1988 .

[8]  J. Rose,et al.  Towards elucidating the interplay of structure and dynamics in clusters: Small KCl clusters as models , 1992 .

[9]  Daan Frenkel,et al.  Free energy changes on freezing and melting ductile metals , 1993 .

[10]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[11]  S. F. Chekmarev,et al.  An analytic model for atomic clusters , 1993 .

[12]  J. D. Doll,et al.  Extending J walking to quantum systems: Applications to atomic clusters , 1992 .

[13]  Clyde L. Briant,et al.  Molecular dynamics study of the structure and thermodynamic properties of argon microclusters , 1975 .

[14]  David J. Wales,et al.  Melting and freezing of small argon clusters , 1990 .

[15]  N. Quirke The Microcrystal Melting Transition , 1988 .

[16]  F. Stillinger,et al.  Point defects in bcc crystals: Structures, transition kinetics, and melting implications , 1984 .

[17]  R. Berry,et al.  Unequal freezing and melting temperatures for clusters , 1984 .

[18]  Daan Frenkel,et al.  COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .

[19]  J. Rose,et al.  Freezing, melting, nonwetting, and coexistence in (KCl)32 , 1993 .

[20]  Robert L. Whetten,et al.  Capillarity theory for the coexistence of liquid and solid clusters , 1988 .

[21]  J. Jellinek,et al.  Separation of the energy of overall rotation in any N-body system. , 1989, Physical review letters.

[22]  Gary P. Morriss,et al.  The isothermal/isobaric molecular dynamics ensemble , 1983 .

[23]  D. Wales Locating stationary points for clusters in cartesian coordinates , 1993 .

[24]  R. Berry,et al.  Melting and surface tension in microclusters , 1983 .

[25]  D. Wales,et al.  Rearrangements of model (H2O)8 and (H2O)20 clusters , 1993 .

[26]  Thomas L. Beck,et al.  The interplay of structure and dynamics in the melting of small clusters , 1988 .

[27]  C. J. Tsai,et al.  Use of the histogram and jump‐walking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the (Ar)13 and (H2O)8 clusters , 1993 .

[28]  J. Jellinek,et al.  Vibrations of rapidly rotating N-body systems , 1990 .

[29]  S. Weerasinghe,et al.  Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters , 1993 .

[30]  Thomas L. Beck,et al.  Rare gas clusters: Solids, liquids, slush, and magic numbers , 1987 .

[31]  Cheng,et al.  Surface melting of clusters and implications for bulk matter. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  R. Berry,et al.  Melting of clusters and melting , 1984 .

[33]  D. Wales Transition states for Ar55 , 1990 .

[34]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[35]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[36]  J. Jortner,et al.  Energetic and thermodynamic size effects in molecular clusters , 1989 .

[37]  Complete statistical thermodynamics of the cluster solid-liquid transition. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[38]  Frank H. Stillinger,et al.  Computational study of transition dynamics in 55-atom clusters , 1990 .

[39]  K. Gubbins,et al.  A molecular dynamics study of liquid drops , 1984 .

[40]  J. Jellinek,et al.  Rotating clusters: centrifugal distortion, isomerization, fragmentation , 1989 .

[41]  R. Stephen Berry,et al.  The onset of nonrigid dynamics and the melting transition in Ar7 , 1986 .

[42]  F. Stillinger,et al.  Pressure melting of ice , 1984 .

[43]  D. Lynden-Bell,et al.  On the negative specific heat paradox , 1977 .