N-soliton solutions and dynamic property analysis of a generalized three-component Hirota-Satsuma coupled KdV equation

Abstract In this paper, a generalized three-component Hirota-Satsuma coupled KdV equation describing the interactions of two long waves with different dispersion relations, is investigated. Applying Hirota bilinear operator theory, the bilinear form of the proposed model is firstly obtained, and then its N -soliton solutions are given in explicit forms. Finally, the analysis of the dynamic property shows that the collisions between two solitons are elastic.

[1]  Wen-Xiu Ma,et al.  Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation , 2020, Commun. Nonlinear Sci. Numer. Simul..

[2]  Wen-Xiu Ma,et al.  Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation , 2016 .

[3]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[4]  Xianguo Geng,et al.  Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations , 2003 .

[5]  Deng-Shan Wang,et al.  AUTO-BÄCKLUND TRANSFORMATION AND NEW EXACT SOLUTIONS OF THE (2 + 1)-DIMENSIONAL NIZHNIK–NOVIKOV–VESELOV EQUATION , 2005 .

[6]  Zhonglong Zhao,et al.  Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation , 2019, Appl. Math. Lett..

[7]  Xianguo Geng,et al.  A generalized Hirota–Satsuma coupled Korteweg–de Vries equation and Miura transformations , 1999 .

[8]  Zhonglong Zhao,et al.  M-lump, high-order breather solutions and interaction dynamics of a generalized $$(2 + 1)$$-dimensional nonlinear wave equation , 2020, Nonlinear Dynamics.

[9]  Javier Villarroel,et al.  A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev–Petviashvili I equations , 2000 .

[10]  Bo Tian,et al.  On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations , 2007 .

[11]  Yong-Li Sun,et al.  N-soliton solutions and long-time asymptotic analysis for a generalized complex Hirota-Satsuma coupled KdV equation , 2020, Appl. Math. Lett..

[12]  Abdul-Majid Wazwaz,et al.  Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion relations , 2016, Appl. Math. Lett..

[13]  Xing Lü,et al.  Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types , 2021, Nonlinear Dynamics.

[14]  Xing Lü,et al.  Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws , 2020, Commun. Nonlinear Sci. Numer. Simul..

[15]  Xing Lü,et al.  Localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations , 2020 .

[16]  Min Li,et al.  N-soliton solutions and asymptotic analysis for a Kadomtsev–Petviashvili–Schrödinger system for water waves , 2015 .

[17]  Jingsong He,et al.  Dynamics and interaction scenarios of localized wave structures in the Kadomtsev-Petviashvili-based system , 2019, Appl. Math. Lett..

[18]  Wen-Xiu Ma,et al.  Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations , 2020, Appl. Math. Lett..

[19]  Engui Fan,et al.  Double periodic solutions with Jacobi elliptic functions for two generalized Hirota–Satsuma coupled KdV systems , 2002 .

[20]  Abdul-Majid Wazwaz,et al.  A two-mode modified KdV equation with multiple soliton solutions , 2017, Appl. Math. Lett..

[21]  Wu Jian-Ping,et al.  N-Soliton Solution of a Generalized Hirota?Satsuma Coupled KdV Equation and Its Reduction , 2009 .

[22]  Wen-Xiu Ma,et al.  Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation , 2017, Nonlinear Dynamics.

[23]  Wen-Xiu Ma,et al.  Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation , 2016 .

[24]  Jian-Guo Liu,et al.  Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction , 2018, Comput. Math. Appl..

[25]  E. Fan,et al.  Soliton solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled MKdV equation , 2001 .

[26]  Wenxiu Ma,et al.  The Hirota-Satsuma Coupled KdV Equation and a Coupled Ito System Revisited , 2000 .

[27]  Javier Villarroel,et al.  On the Discrete Spectrum of the Nonstationary Schrödinger Equation and Multipole Lumps of the Kadomtsev–Petviashvili I Equation , 1999 .

[28]  Zhonglong Zhao,et al.  Bäcklund transformations and Riemann–Bäcklund method to a (3 + 1)-dimensional generalized breaking soliton equation , 2020, The European Physical Journal Plus.

[29]  Jingsong He,et al.  Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  B. Guo,et al.  Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions , 2019, Journal of Differential Equations.

[31]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[32]  Xiaoen Zhang,et al.  Inverse scattering transformation for generalized nonlinear Schrödinger equation , 2019, Appl. Math. Lett..

[33]  Jiang Liu,et al.  Integrability aspects of some two-component KdV systems , 2018, Appl. Math. Lett..

[34]  Javier Villarroel,et al.  Solutions to the Time Dependent Schrödinger and the Kadomtsev-Petviashvili Equations , 1997 .

[35]  Yu Zhang,et al.  Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior , 2020, Appl. Math. Lett..

[36]  Yong Chen,et al.  Localized waves and interaction solutions to an extended (3+1)-dimensional Jimbo-Miwa equation , 2019, Appl. Math. Lett..

[37]  Deng-Shan Wang,et al.  Integrability and exact solutions of a two-component Korteweg-de Vries system , 2016, Appl. Math. Lett..

[38]  Chaudry Masood Khalique,et al.  A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model , 2015, Appl. Math. Lett..

[39]  Ji Lin,et al.  Consistent Riccati expansion and rational solutions of the Drinfel'd-Sokolov-Wilson equation , 2020, Appl. Math. Lett..