Frequency-dependent magnetic permeability of Fe10Co90 nanocomposites

The frequency- and temperature-dependent magnetic permeability of a compacted Fe10Co90 nanocomposite was measured over a range of temperatures (77?873?K) and frequencies (0.1?100?kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeabilities are scaled relative to the peak frequency of the imaginary permeability, all fall on universal curves. The complex permeability was fitted by modifying the Cole?Davidson model to account for higher damping consistent with predictions for eddy current losses. The physical significance of the relaxation time distribution obtained from the fits is discussed.

[1]  M. Sharrock,et al.  Time dependence of switching fields in magnetic recording media (invited) , 1994 .

[2]  G. Herzer,et al.  Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets , 1990, International Conference on Magnetics.

[3]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[4]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[5]  J. D. Lavers,et al.  Eddy-current power loss in toroidal cores with rectangular cross section , 1998 .

[6]  W. Coffey,et al.  Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown , 2012, 1209.0298.

[7]  Paul R. Ohodnicki,et al.  Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications , 2012, JOM.

[8]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[9]  B. Scaife,et al.  The measurement of the frequency dependent susceptibility of magnetic colloids , 1988 .

[10]  G. Bertotti General properties of power losses in soft ferromagnetic materials , 1988 .

[11]  P. C. Fannin,et al.  On the use of complex susceptibility data to complement magnetic viscosity measurements , 1994 .

[12]  S. Yamada,et al.  Analysis of eddy current loss in Mn-Zn ferrites for power supplies , 1995 .

[13]  G. Bertotti,et al.  Dependence on peak induction and grain size of power losses in nonoriented SiFe steels , 1988 .

[14]  J G Powles,et al.  LETTERS TO THE EDITOR: The Interpretation of Dielectric Measurements using the Cole-Cole Plot , 1951 .

[15]  J. Dormann,et al.  Magnetic Relaxation in Fine‐Particle Systems , 2007 .

[16]  G. Bertotti,et al.  Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations , 1985 .

[17]  Raoul R. Nigmatullin,et al.  Cole-Davidson dielectric relaxation as a self-similar relaxation process , 1997 .

[18]  S. Dev,et al.  Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1971 .

[19]  W. Roshen Ferrite core loss for power magnetic components design , 1991 .

[20]  J. Calderwood A physical hypothesis for Cole-Davidson behavior , 2003 .

[21]  Yongbing Xu,et al.  Magnetization reversal dynamics in epitaxial Fe/GaAs(001) thin films , 1999 .

[22]  S. Majetich,et al.  AC magnetic properties of FeCo nanocomposites , 2000 .

[23]  J. Bland,et al.  Mesofrequency dynamic hysteresis in thin ferromagnetic films , 2004 .

[24]  Khai D. T. Ngo,et al.  High-temperature, high-frequency characterization system for power ferrites , 2003, IEEE Trans. Instrum. Meas..

[25]  The role of quasi-free dipoles in polar liquid behavior , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[26]  B. Chakrabarti,et al.  Dynamic transitions and hysteresis , 1998, cond-mat/9811086.

[27]  Andrei Kirilyuk,et al.  Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys , 2013, Reports on progress in physics. Physical Society.

[28]  W. Coffey,et al.  Microscopic models for dielectric relaxation in disordered systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. C. Fannin,et al.  On the determination of the magnetisation decay of a magnetic fluid whose complex-susceptibility data fits a Cole—Davidson plot , 1995 .

[30]  Thomas Sourmail,et al.  Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties , 2005 .

[31]  A. Stancu,et al.  Fabrication and characterization of tunable magnetic nanocomposite materials , 2002 .

[32]  Luc Dupré,et al.  Magnetic properties and loss separation in iron powder soft magnetic composite materials , 2002 .

[33]  Seetharama C. Deevi,et al.  Soft magnetic FeCo alloys: alloy development, processing, and properties , 2005 .

[34]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[35]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[36]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[37]  Raoul R. Nigmatullin,et al.  Signal processing and recognition of true kinetic equations containing non-integer derivatives from raw dielectric data , 2003, Signal Process..

[38]  G. Teeter,et al.  Magnetic hysteresis dynamics of thin Co films on Cu(001) , 1999 .

[39]  Helmut Pfützner,et al.  Problems of loss separation for crystalline and consolidated amorphous soft magnetic materials , 1991 .

[40]  F. Fiorillo,et al.  An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform , 1990 .

[41]  R. T. Fingers,et al.  Application of high temperature magnetic materials , 2000 .

[42]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[43]  Dynamic hysteresis of a superparamagnetic nanoparticle , 2004 .

[44]  Y. Raikher,et al.  Dynamic magnetic hysteresis in single-domain particles with uniaxial anisotropy , 2010 .

[45]  Rao,et al.  Magnetic hysteresis in two model spin systems. , 1990, Physical review. B, Condensed matter.

[46]  S. Havriliak Electric Polarization of Polar Time‐Dependent Rigid Materials , 2007 .