An abstract framework for parabolic PDEs on evolving spaces
暂无分享,去创建一个
[1] Tomáš Roubíček,et al. Relaxation in Optimization Theory and Variational Calculus , 1997 .
[2] S. Meier. A NOTE ON THE CONSTRUCTION OF FUNCTION SPACES FOR DISTRIBUTED-MICROSTRUCTURE MODELS WITH SPATIALLY VARYING CELL GEOMETRY , 2008 .
[3] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .
[4] F. Paronetto. An existence result for evolution equations in non-cylindrical domains , 2013 .
[5] M. F. Cortez,et al. PDEs in Moving Time Dependent Domains , 2014, 1403.0838.
[6] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[7] On Evolution Equations for Moving Domains , 1999 .
[8] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[9] On the blow-up mechanism of moving boundary problems , 2011 .
[10] Charles M. Elliott,et al. Finite element methods for surface PDEs* , 2013, Acta Numerica.
[11] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[12] Yoshio Yamada. Periodic solutions of certain nonlinear parabolic differential equations in domains with periodically moving boundaries , 1978, Nagoya Mathematical Journal.
[13] J. Carifio,et al. Nonlinear Analysis , 1995 .
[14] C. M. Elliott,et al. An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .
[15] C. M. Elliott,et al. ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO PARTIAL DIFFERENTIAL EQUATIONS ON MOVING SURFACES , 2008 .
[16] P. Maini,et al. Modeling parr-mark pattern formation during the early development of Amago trout. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] R. Hiptmair,et al. Boundary Element Methods , 2021, Oberwolfach Reports.
[18] F. Demengel,et al. Functional Spaces for the Theory of Elliptic Partial Differential Equations , 2012 .
[19] M. Vierling,et al. Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .
[20] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations , 1996 .
[21] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[22] C. M. Elliott,et al. Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .
[23] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[24] Morton E. Gurtin,et al. Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.
[25] Charles M. Elliott,et al. Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..
[26] Charles M. Elliott,et al. L2-estimates for the evolving surface finite element method , 2012, Math. Comput..
[27] Kanishka Perera,et al. Nonlinear Differential Equations and Applications NoDea , 2013 .
[28] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .
[29] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[30] T. Roubíček. Nonlinear partial differential equations with applications , 2005 .
[31] C. M. Elliott,et al. Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.
[32] Stefano Bonaccorsi,et al. A Variational Approach to Evolution Problems with Variable Domains , 2001 .
[33] C. M. Elliott,et al. The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.
[34] Charles M. Elliott,et al. On some linear parabolic PDEs on moving hypersurfaces , 2014, 1412.1624.
[35] L. J. Alvarez-Vázquez,et al. An Arbitrary Lagrangian Eulerian formulation for a 3D eutrophication model in a moving domain , 2010 .
[36] Maxim A. Olshanskii,et al. An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..
[37] Morten Vierling,et al. On control-constrained parabolic optimal control problems on evolving surfaces - theory and variational discretization , 2011, ArXiv.
[38] Fabio Nobile,et al. Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .
[39] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[40] Stephen Childress,et al. An Introduction to Theoretical Fluid Mechanics , 2009 .
[41] Harald Garcke,et al. Diffuse interface modelling of soluble surfactants in two-phase flow , 2013, 1303.2559.
[42] Peter E. Kloeden,et al. Pullback attractors for a semilinear heat equation on time-varying domains ✩ , 2009 .
[43] Michele Benzi,et al. Mauro Picone, Sandro Faedo, and the numerical solution of partial differential equations in Italy (1928–1953) , 2014, Numerical Algorithms.
[44] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[45] Ricardo H. Nochetto,et al. Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..