An abstract framework for parabolic PDEs on evolving spaces

We present an abstract framework for treating the theory of well-posedness of solutions to abstract parabolic partial differential equations on evolving Hilbert spaces. This theory is applicable to variational formulations of PDEs on evolving spatial domains including moving hypersurfaces. We formulate an appropriate time derivative on evolving spaces called the material derivative and define a weak material derivative in analogy with the usual time derivative in fixed domain problems; our setting is abstract and not restricted to evolving domains or surfaces. Then we show well-posedness to a certain class of parabolic PDEs under some assumptions on the parabolic operator and the data.

[1]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[2]  S. Meier A NOTE ON THE CONSTRUCTION OF FUNCTION SPACES FOR DISTRIBUTED-MICROSTRUCTURE MODELS WITH SPATIALLY VARYING CELL GEOMETRY , 2008 .

[3]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[4]  F. Paronetto An existence result for evolution equations in non-cylindrical domains , 2013 .

[5]  M. F. Cortez,et al.  PDEs in Moving Time Dependent Domains , 2014, 1403.0838.

[6]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[7]  On Evolution Equations for Moving Domains , 1999 .

[8]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[9]  On the blow-up mechanism of moving boundary problems , 2011 .

[10]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[11]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[12]  Yoshio Yamada Periodic solutions of certain nonlinear parabolic differential equations in domains with periodically moving boundaries , 1978, Nagoya Mathematical Journal.

[13]  J. Carifio,et al.  Nonlinear Analysis , 1995 .

[14]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .

[15]  C. M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO PARTIAL DIFFERENTIAL EQUATIONS ON MOVING SURFACES , 2008 .

[16]  P. Maini,et al.  Modeling parr-mark pattern formation during the early development of Amago trout. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[18]  F. Demengel,et al.  Functional Spaces for the Theory of Elliptic Partial Differential Equations , 2012 .

[19]  M. Vierling,et al.  Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .

[20]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[21]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[22]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[23]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[24]  Morton E. Gurtin,et al.  Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.

[25]  Charles M. Elliott,et al.  Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..

[26]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[27]  Kanishka Perera,et al.  Nonlinear Differential Equations and Applications NoDea , 2013 .

[28]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[29]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[30]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[31]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[32]  Stefano Bonaccorsi,et al.  A Variational Approach to Evolution Problems with Variable Domains , 2001 .

[33]  C. M. Elliott,et al.  The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.

[34]  Charles M. Elliott,et al.  On some linear parabolic PDEs on moving hypersurfaces , 2014, 1412.1624.

[35]  L. J. Alvarez-Vázquez,et al.  An Arbitrary Lagrangian Eulerian formulation for a 3D eutrophication model in a moving domain , 2010 .

[36]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[37]  Morten Vierling,et al.  On control-constrained parabolic optimal control problems on evolving surfaces - theory and variational discretization , 2011, ArXiv.

[38]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[39]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[40]  Stephen Childress,et al.  An Introduction to Theoretical Fluid Mechanics , 2009 .

[41]  Harald Garcke,et al.  Diffuse interface modelling of soluble surfactants in two-phase flow , 2013, 1303.2559.

[42]  Peter E. Kloeden,et al.  Pullback attractors for a semilinear heat equation on time-varying domains ✩ , 2009 .

[43]  Michele Benzi,et al.  Mauro Picone, Sandro Faedo, and the numerical solution of partial differential equations in Italy (1928–1953) , 2014, Numerical Algorithms.

[44]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[45]  Ricardo H. Nochetto,et al.  Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..