Organization and function of the 3 D genome

[1]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[2]  D. Tremethick,et al.  Higher-Order Structures of Chromatin: The Elusive 30 nm Fiber , 2007, Cell.

[3]  W. Bickmore,et al.  Single-Cell Dynamics of Genome-Nuclear Lamina Interactions , 2013, Cell.

[4]  M. Kladde,et al.  Interaction between transcription regulatory regions of prolactin chromatin. , 1993, Science.

[5]  Ivan Ovcharenko,et al.  Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. , 2007, Genome research.

[6]  Michael Y Tolstorukov,et al.  Nature and function of insulator protein binding sites in the Drosophila genome , 2012, Genome research.

[7]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[8]  S. Hannenhalli,et al.  Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development , 2008, Development.

[9]  O. Delaneau,et al.  Population Variation and Genetic Control of Modular Chromatin Architecture in Humans , 2015, Cell.

[10]  Jennifer A. Mitchell,et al.  Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells , 2010, Nature Genetics.

[11]  D. Reinberg,et al.  CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53 , 2014, Genes & development.

[12]  Nir Friedman,et al.  Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C , 2015, Cell.

[13]  Peng Yin,et al.  Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes , 2015, Nature Communications.

[14]  Giacomo Cavalli,et al.  The Role of Chromosome Domains in Shaping the Functional Genome , 2015, Cell.

[15]  Wouter de Laat,et al.  A Regulatory Archipelago Controls Hox Genes Transcription in Digits , 2011, Cell.

[16]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[17]  Robert S. Illingworth,et al.  Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells , 2014, Science.

[18]  Benjamin Leblanc,et al.  Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila , 2011, Cell.

[19]  P. Flicek,et al.  Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. , 2010, Molecular cell.

[20]  Neva C. Durand,et al.  Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture , 2016, Proceedings of the National Academy of Sciences.

[21]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[22]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[23]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[24]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[25]  Matteo Pellegrini,et al.  Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. , 2013, Cell stem cell.

[26]  Amos Tanay,et al.  Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. , 2014, Cell reports.

[27]  D. Duboule,et al.  A Switch Between Topological Domains Underlies HoxD Genes Collinearity in Mouse Limbs , 2013, Science.

[28]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[29]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[30]  Dylan J. Taatjes,et al.  The Mediator complex: a central integrator of transcription , 2015, Nature Reviews Molecular Cell Biology.

[31]  N. Galjart,et al.  CTCF regulates cell cycle progression of αβ T cells in the thymus , 2008, The EMBO journal.

[32]  Nicolas Tanguy-le-Gac,et al.  DNA Dynamics during Early Double-Strand Break Processing Revealed by Non-Intrusive Imaging of Living Cells , 2014, PLoS genetics.

[33]  S. Rehen,et al.  Chromosomal variation in neurons of the developing and adult mammalian nervous system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Ilya M. Flyamer,et al.  Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains , 2016, Genome research.

[35]  T. Mikkelsen,et al.  Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites , 2007, Proceedings of the National Academy of Sciences.

[36]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[37]  V. Corces,et al.  CTCF: an architectural protein bridging genome topology and function , 2014, Nature Reviews Genetics.

[38]  L. Mirny,et al.  High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome , 2013, Science.

[39]  A. Pombo,et al.  Three-dimensional genome architecture: players and mechanisms , 2015, Nature Reviews Molecular Cell Biology.

[40]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[41]  P. Pevzner,et al.  Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps , 2005, Science.

[42]  Philip A. Ewels,et al.  Global Reorganization of the Nuclear Landscape in Senescent Cells , 2015, Cell reports.

[43]  Jennifer E. Phillips-Cremins,et al.  Chromatin insulators: linking genome organization to cellular function. , 2013, Molecular cell.

[44]  D. Pinkel,et al.  Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Job Dekker,et al.  Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe , 2014, Nature.

[46]  Chee Seng Chan,et al.  CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells , 2011, Nature Genetics.

[47]  Matteo Pellegrini,et al.  Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. , 2014, Molecular cell.

[48]  B. Chadwick,et al.  The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. , 2012, Human molecular genetics.

[49]  Boris Lenhard,et al.  Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments , 2013, Genome research.

[50]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[51]  T. Richmond,et al.  X-ray structure of a tetranucleosome and its implications for the chromatin fibre , 2005, Nature.

[52]  Leonid A. Mirny,et al.  Super-resolution imaging reveals distinct chromatin folding for different epigenetic states , 2015, Nature.

[53]  E. Schierenberg,et al.  The chromatin insulator CTCF and the emergence of metazoan diversity , 2012, Proceedings of the National Academy of Sciences.

[54]  Antonin Morillon,et al.  Gene loops juxtapose promoters and terminators in yeast , 2004, Nature Genetics.

[55]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[56]  Jennifer A. Erwin,et al.  Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. , 2015, Molecular cell.