A unifying theory of a posteriori error control for discontinuous Galerkin FEM

A unified a posteriori error analysis is derived in extension of Carstensen (Numer Math 100:617–637, 2005) and Carstensen and Hu (J Numer Math 107(3):473–502, 2007) for a wide range of discontinuous Galerkin (dG) finite element methods (FEM), applied to the Laplace, Stokes, and Lamé equations. Two abstract assumptions (A1) and (A2) guarantee the reliability of explicit residual-based computable error estimators. The edge jumps are recast via lifting operators to make arguments already established for nonconforming finite element methods available. The resulting reliable error estimate is applied to 16 representative dG FEMs from the literature. The estimate recovers known results as well as provides new bounds to a number of schemes.

[1]  Bernardo Cockburn,et al.  An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems , 2005, J. Sci. Comput..

[2]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[3]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[4]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[5]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[6]  Carsten Carstensen,et al.  Uniform convergence and a posteriori error estimators for the enhanced strain finite element method , 2004, Numerische Mathematik.

[7]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[8]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[9]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[10]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[11]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[12]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[13]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[14]  Thomas P. Wihler Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..

[15]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..

[16]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[17]  Carsten Carstensen,et al.  Numerical analysis of the primal problem of elastoplasticity with hardening , 1999, Numerische Mathematik.

[18]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[19]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[22]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[23]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[24]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[25]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[26]  Carsten Carstensen,et al.  Averaging techniques for reliable and efficient a posteriori finite element error control : analysis and applications. , 2005 .

[27]  Bernardo Cockburn,et al.  Discontinuous Galerkin methods for incompressible elastic materials , 2006 .

[28]  D. Schötzau,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem , 2003 .

[29]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[30]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[31]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[32]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[33]  Carsten Carstensen,et al.  A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.

[34]  Paul Houston,et al.  Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem , 2005, J. Sci. Comput..