A hybrid content-based clustering architecture: minimising uncertainty in personalised multimedia content

This paper aims at demonstrating the validity of a hybrid content-based clustering architecture that combines personalisation techniques. The paper describes a hybrid content-based clustering architecture for adaptive web-sites using an advanced personalisation process, emphasising in personalising multimedia content. The overall personalisation process is described following all stages and the experimental results and statistical analysis presented indicate that this architecture achieves more successful recommendations, thus reduces uncertainty of recommendations. Finally, this paper suggests the enhancement of the current hybrid filtering process by employing fuzzy logic for improving the profiling system and user modelling, therefore reducing the uncertainty level even further.

[1]  Huaiqing Wang,et al.  Intelligent student profiling with fuzzy models , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[2]  Gerti Kappel,et al.  Modeling customizable Web applications - a requirement's perspective , 2000, Proceedings 2000 Kyoto International Conference on Digital Libraries: Research and Practice.

[3]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[4]  Aimilia Tzanavari,et al.  Combining Collaborative and Content-Based Filtering Using Conceptual Graphs , 2003, Modelling with Words.

[5]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[6]  Michael J. Pazzani,et al.  Collaborative Filtering with the Simple Bayesian Classifier , 2000, PRICAI.

[7]  Kostas Karpouzis,et al.  The Electronic Road: Personalized Content Browsing , 2003, IEEE Multim..

[8]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[9]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[10]  Oren Etzioni,et al.  Adaptive Web sites , 2000, CACM.

[11]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[12]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[13]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[14]  Drakoulis Martakos,et al.  Creating adaptive web sites using personalization techniques: a unified, integrated approach and the role of evaluation , 2003 .

[15]  Pedro M. Domingos,et al.  Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier , 1996, ICML.

[16]  Bernard J. Jaworski,et al.  Introduction to E-Commerce , 2001 .

[17]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[18]  Loren Terveen,et al.  PHOAKS: a system for sharing recommendations , 1997, CACM.

[19]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[20]  Harry Zhang,et al.  Naive Bayesian Classifiers for Ranking , 2004, ECML.

[21]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[22]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[23]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[24]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[25]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[26]  Bradley N. Miller,et al.  Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system , 1998, CSCW '98.

[27]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[28]  Theodora A. Varvarigou,et al.  Adaptive Algorithms for Interactive Multimedia , 2003, IEEE Multim..

[29]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[30]  Alfred Kobsa,et al.  Personalised hypermedia presentation techniques for improving online customer relationships , 2001, The Knowledge Engineering Review.

[31]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[32]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[33]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[34]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[35]  Ronald R. Yager,et al.  Targeted E-commerce Marketing Using Fuzzy Intelligent Agents , 2000, IEEE Intell. Syst..