Towards solar fuels from water and CO2.

Solar fuels from water and CO2 are a topic of current large scientific and industrial interest. Research advances on bioroutes, concentrated solar thermal and low-temperature conversion using semiconductors and a photoelectrocatalytic (PEC) approach, are critically discussed and compared in an attempt to define challenges and current limits and to identify the priorities on which focus research and development (R&D). The need to produce fuels that are easy to transport and store, which can be integrated into the existing energy infrastructure, is emphasized. The role of solar fuels produced from CO2 in comparison with solar H2 is analyzed. Solar fuels are complementary to solar to electrical energy conversion, but they still need intensified R&D before possible commercialization.

[1]  Xiaogang Zhang,et al.  Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode , 2005 .

[2]  I. Yamazaki,et al.  Bioinspired molecular design of light-harvesting multiporphyrin arrays. , 2004, Angewandte Chemie.

[3]  S. Bhattacharya,et al.  Hydrogen production by Cyanobacteria , 2005, Microbial Cell Factories.

[4]  K. Domen,et al.  The effects of starting materials in the synthesis of (Ga(1-x)Znx)(N(1-x)O(x)) solid solution on its photocatalytic activity for overall water splitting under visible light. , 2009, ChemSusChem.

[5]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[6]  Christian Sattler,et al.  Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides , 2006 .

[7]  J. Fierro,et al.  Water splitting on semiconductor catalysts under visible-light irradiation. , 2009, ChemSusChem.

[8]  Siglinda Perathoner,et al.  Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons , 2007 .

[9]  Gabriele Centi,et al.  Catalysis for Renewables , 2007 .

[10]  Paitoon Tontiwachwuthikul,et al.  Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams , 2006 .

[11]  Masaaki Kitano,et al.  Recent developments in titanium oxide-based photocatalysts , 2007 .

[12]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[13]  G. Dey CHEMICAL REDUCTION OF CO2 TO DIFFERENT PRODUCTS DURING PHOTO CATALYTIC REACTION ON TIO2 UNDER DIVERSE CONDITIONS: AN OVERVIEW , 2007 .

[14]  J. Moulijn,et al.  Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes , 2008 .

[15]  Christian Sattler,et al.  Solar water splitting for hydrogen production with monolithic reactors , 2005 .

[16]  Olaf Kruse,et al.  Perspectives and advances of biological H2 production in microorganisms , 2006, Applied Microbiology and Biotechnology.

[17]  K. Domen,et al.  Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light , 2009 .

[18]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[19]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[20]  T. Kodama High-temperature solar chemistry for converting solar heat to chemical fuels , 2003 .

[21]  E. Steen,et al.  Fischer‐Tropsch Catalysts for the Biomass‐to‐Liquid (BTL)‐Process , 2008 .

[22]  Stuart Licht,et al.  Solar Water Splitting To Generate Hydrogen Fuel: Photothermal Electrochemical Analysis , 2003 .

[23]  Nelson A. Kelly,et al.  Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting , 2006 .

[24]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[25]  Christian Sattler,et al.  Operational strategy of a two-step thermochemical process for solar hydrogen production , 2009 .

[26]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[27]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[28]  C. Minero,et al.  Solar Photocatalysis for Hydrogen Production and CO2 Conversion , 2007 .

[29]  T. Fletcher,et al.  Modeling the direct solar conversion of CO2 to CO and O2 , 2004 .

[30]  G. Centi,et al.  Heterogeneous Catalytic Reactions with CO2: Status and Perspectives , 2004 .

[31]  T. Donohue,et al.  Microorganisms and clean energy , 2006, Nature Reviews Microbiology.

[32]  Yan Song,et al.  Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. , 2009, Inorganic chemistry.

[33]  Siglinda Perathoner,et al.  Catalysis: Role and Challenges for a Sustainable Energy , 2009 .

[34]  Michael Stöcker,et al.  Bio‐ und BTL‐Kraftstoffe in der Bioraffinerie: katalytische Umwandlung Lignocellulose‐reicher Biomasse mit porösen Stoffen , 2008 .

[35]  Shin-ichi Kikuchi,et al.  Photosensitized Electrolytic Oxidation on Semiconducting n-Type TiO2 Electrode , 1969 .

[36]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[37]  W. Lubitz,et al.  Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases , 2008 .

[38]  H. Sakurai,et al.  Promoting R & D in Photobiological Hydrogen Production Utilizing Mariculture-Raised Cyanobacteria , 2007, Marine Biotechnology.

[39]  Gilles Flamant,et al.  Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides , 2006 .

[40]  A. Faaij,et al.  Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis , 2009 .

[41]  Akira Murata,et al.  "Deactivation of copper electrode" in electrochemical reduction of CO2 , 2005 .

[42]  R. Schlögl,et al.  Oxide thin films based on ordered arrays of 1D nanostructure. A possible approach toward bridging material gap in catalysis. , 2007, Physical chemistry chemical physics : PCCP.

[43]  Claudia Schmidt-Dannert,et al.  Light-energy conversion in engineered microorganisms. , 2008, Trends in biotechnology.

[44]  K. Domen,et al.  Origin of Visible Light Absorption in GaN-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts , 2007 .

[45]  Nelson A. Kelly,et al.  Optimization of solar powered hydrogen production using photovoltaic electrolysis devices , 2008 .

[46]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[47]  Seeram Ramakrishna,et al.  Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[48]  K. Domen,et al.  Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light , 2009 .

[49]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[50]  P. V. Cutsem,et al.  Thylakoids entrapped within porous silica gel: towards living matter able to convert energy , 2009 .

[51]  Shinichi Ichikawa,et al.  Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis , 1996 .

[52]  Stuart Licht,et al.  Thermochemical solar hydrogen generation. , 2005, Chemical communications.

[53]  Jackie Y Ying,et al.  Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. , 2009, Angewandte Chemie.

[54]  Reed J. Jensen,et al.  Direct Solar Reduction of CO2 to Fuel: First Prototype Results , 2002 .

[55]  Hung-Ming Lin,et al.  Photo reduction of CO2 to methanol via TiO2 photocatalyst , 2005 .

[56]  B. Su,et al.  Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices , 2008 .

[57]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[58]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[59]  Helmut Tributsch,et al.  Photovoltaic hydrogen generation , 2008 .

[60]  T. Lee,et al.  Photocatalytic Production of H2 on Nanocomposite Catalysts , 2007 .

[61]  S. Tsang,et al.  Recent advances in CO2 capture and utilization. , 2008, ChemSusChem.

[62]  Michael R. Thompson,et al.  Basic Research Needs: Catalysis for Energy , 2008 .

[63]  H. Bothe,et al.  Maximizing Hydrogen Production by Cyanobacteria , 2008, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[64]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[65]  Vincenzo Balzani,et al.  Photochemical conversion of solar energy. , 2008, ChemSusChem.

[66]  W. Chueh,et al.  Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2). , 2009, ChemSusChem.

[67]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[68]  C. Pham‐Huu,et al.  Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates , 2009 .

[69]  G. Centi,et al.  Nano-architecture and reactivity of titania catalytic materials. Part 2. Bidimensional nanostructured films , 2009 .

[70]  S. Enthaler,et al.  Carbon dioxide--the hydrogen-storage material of the future? , 2008, ChemSusChem.

[71]  Hung-Ming Lin,et al.  Photo reduction of CO2 to methanol using optical-fiber photoreactor , 2005 .

[72]  Michael Stöcker,et al.  Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. , 2008, Angewandte Chemie.

[73]  Siglinda Perathoner,et al.  The Role of Nanostructure in Improving the Performance of Electrodes for Energy Storage and Conversion , 2009 .

[74]  Antonio Currao Photoelectrochemical Water Splitting , 2007 .

[75]  T. Aida,et al.  Bioinspiriertes Molekulardesign von lichtsammelnden Multiporphyrinsystemen , 2004 .

[76]  G. Centi,et al.  Synthesis of TiO2 Thin Films: Relationship Between Preparation Conditions and Nanostructure , 2008 .

[77]  Debabrata Das,et al.  Biohydrogen as a renewable energy resource—Prospects and potentials , 2008 .