Cephalosporins Determination with a Novel Microbial Biosensor Based on Permeabilized Pseudomonas aeruginosa Whole Cells

A new potentiometric microbial biosensor based on Pseudomonas aeruginosa was developed in this study for detecting the cephalosporin group of antibiotics. Preliminary results with the biosensor indicated that P. aeruginosa cells, when treated with lysozyme, showed more efficiency in detecting cephalosporin C in a wide concentration range of 0.1–11 mM with high sensitivity compared to the normal cells. Optimization of the three important biosensor design parameters permeabilized cell contents, quantities of gelatin, and glutaraldehyde resulted in high performance of the biosensor. The optimized values of the above parameters were cell contents 2.5 mg/cm2, gelatin 8.5 mg/cm2, and 0.25% glutaraldehyde. The assay conditions, namely phosphate buffer pH, ionic strength, and temperature, were optimized for best performance of the biosensor. The specificity test of the biosensor towards detecting different β-lactam antibiotics showed good response only for the cephalosporins. The operational and storage stability in detecting cephalosporin C indicated very good potential of the biosensor in detecting cephalosporins with high accuracy.

[1]  M. Vaara,et al.  Agents that increase the permeability of the outer membrane. , 1992, Microbiological reviews.

[2]  E. Dinçkaya,et al.  An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. , 2005, Biosensors & bioelectronics.

[3]  Jacques Degelaen,et al.  Determination of beta-lactams in milk using a surface plasmon resonance-based biosensor. , 2004, Journal of agricultural and food chemistry.

[4]  E. Khamis,et al.  Selective spectrofluorimetric determination of phenolic beta-lactam antibiotics through the formation of their coumarin derivatives. , 1999, Journal of pharmaceutical and biomedical analysis.

[5]  B. Szpikowska-Sroka,et al.  Spectrophotometric determination of cephalosporins with leuco crystal violet , 2003 .

[6]  Isao Karube,et al.  Immobilized whole cell-based flow-type sensor for cephalosporins , 1979 .

[7]  H. Salem,et al.  Colourimetric and AAS determination of cephalosporins using Reineck's salt. , 2002, Journal of pharmaceutical and biomedical analysis.

[8]  E. Galindo,et al.  Microbial sensor for penicillins using a recombinant strain of Escherichia coli. , 1990, Enzyme and microbial technology.

[9]  F. Mohamed,et al.  Analysis of cephalosporin antibiotics. , 2007, Journal of pharmaceutical and biomedical analysis.

[10]  Jiuru Lu,et al.  Chemiluminescence flow-injection analysis of beta-lactam antibiotics using the luminol-permanganate reaction. , 2006, Luminescence (Chichester, England Print).

[11]  F. Knauseder,et al.  Rapid determination of cephalosporins with an immobilized enzyme reactor and sequential subtractive spectrophotometric detection in an automated flow-injection system , 1984 .

[12]  D. Tsikas,et al.  Capillary isotachophoretic analysis of β-lactam antibiotics and their precursors , 1990 .

[13]  P. Ellaiah,et al.  Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum , 2003 .

[14]  İ. Yaşa,et al.  Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells. , 2007, Biosensors & bioelectronics.

[15]  A. J. Furth Purification and properties of a constitutive beta-lactamase from Pseudomonas aeruginosa strain Dalgleish. , 1975, Biochimica et biophysica acta.

[16]  Xavier Soberón,et al.  Microbial sensor for new-generation cephalosporins based in a protein-engineered β- lactamase , 1998, Applied biochemistry and biotechnology.

[17]  M. Rey,et al.  Determination of pharmaceuticals by multi-phase chromatography : combined reversed phase and ion exchange in one column , 1990 .

[18]  Jacques Degelaen,et al.  Analysis of β-Lactam Antibiotics Using a Microbial Receptor Protein-based Biosensor Assay , 2002 .

[19]  M. Abdel-Hamid,et al.  FSQ spectrophotometric and HPLC analysis of some cephalosporins in the presence of their alkali-induced degradation products , 1998 .

[20]  J. G. Black Microbiology: Principles and Explorations , 1980 .

[21]  Åse Sternesjö,et al.  Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity , 2002 .

[22]  R. Neubert,et al.  Determination of dissociation constants of cephalosporins by capillary zone electrophoresis , 1998 .

[23]  W. G. Evans,et al.  Hydroxylamine determination of cephalosporins. , 1975, Analytical chemistry.

[24]  S. Enfors,et al.  Design and response characteristics of an enzyme electrode for measurement of penicillin in fermentation broth , 1979 .

[25]  A. Schleifer,et al.  Improved penicillin selective enzyme electrode. , 1974, Analytical chemistry.

[26]  H. Chao,et al.  A bioelectrode for penicillin detection based on gluten‐membrane‐entrapped microbial cells , 2000, Biotechnology and applied biochemistry.

[27]  E. Galindo,et al.  A microbial biosensor for 6-aminopenicillanic acid , 1998 .

[28]  W. LaCourse,et al.  Pulsed electrochemical detection of sulfur-containing antibiotics following high performance liquid chromatography. , 1999, Journal of pharmaceutical and biomedical analysis.

[29]  A. Mukherji,et al.  A penicillin selective enzyme electrode. , 1973, Analytical chemistry.

[30]  Luisa Gallo Martinez,et al.  Comparison of several methods used for the determination of cephalosporins. Analysis of cephalexin in pharmaceutical samples. , 2002 .

[31]  Klaus Mosbach,et al.  An enzyme electrode for measurement of penicillin in fermentation broth: A step toward the application of enzyme electrodes in fermentation control , 1978 .

[32]  D. Agbaba,et al.  Spectrophotometric Determination of Certain Cephalosporins Using Ferrihydroxamate Method , 1997 .

[33]  E. Dinçkaya,et al.  Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine). , 2006, Analytical biochemistry.

[34]  R. Méndez,et al.  Effect of Temperature and Mobile Phase Composition on RP-HPLC Separation of Cephalosporins , 1990 .

[35]  A D Russell,et al.  Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. , 2003, Journal of applied microbiology.

[36]  R Narayanaswamy,et al.  Current developments in optical biochemical sensors. , 1991, Biosensors & bioelectronics.