Slider: incremental sliding window analytics
暂无分享,去创建一个
Pramod Bhatotia | Rodrigo Rodrigues | Umut A. Acar | Flavio Paiva Junqueira | R. Rodrigues | F. Junqueira | Pramod Bhatotia
[1] Pramod Bhatotia,et al. Large-scale Incremental Data Processing with Change Propagation , 2011, HotCloud.
[2] Christopher Olston,et al. Stateful bulk processing for incremental analytics , 2010, SoCC '10.
[3] Ying Li,et al. Microsoft CEP Server and Online Behavioral Targeting , 2009, Proc. VLDB Endow..
[4] Michael Stonebraker,et al. Fault-tolerance in the Borealis distributed stream processing system , 2005, SIGMOD '05.
[5] Ravi Kumar,et al. Pig latin: a not-so-foreign language for data processing , 2008, SIGMOD Conference.
[6] Sartaj Sahni,et al. Handbook of Data Structures and Applications , 2004 .
[7] Umut A. Acar. Self-adjusting computation: (an overview) , 2009, PEPM '09.
[8] Lenin Ravindranath,et al. Nectar: Automatic Management of Data and Computation in Datacenters , 2010, OSDI.
[9] Guy E. Blelloch,et al. An experimental analysis of self-adjusting computation , 2009 .
[10] Pramod Bhatotia,et al. Incoop: MapReduce for incremental computations , 2011, SoCC.
[11] Joseph M. Hellerstein,et al. MapReduce Online , 2010, NSDI.
[12] Guy E. Blelloch,et al. The data locality of work stealing , 2000, SPAA.
[13] Krishna P. Gummadi,et al. On word-of-mouth based discovery of the web , 2011, IMC '11.
[14] Chao Tian,et al. Nova: continuous Pig/Hadoop workflows , 2011, SIGMOD '11.
[15] Scott Shenker,et al. Discretized streams: fault-tolerant streaming computation at scale , 2013, SOSP.
[16] Haifeng Jiang,et al. Photon: fault-tolerant and scalable joining of continuous data streams , 2013, SIGMOD '13.
[17] Marcel Dischinger,et al. Glasnost: Enabling End Users to Detect Traffic Differentiation , 2010, NSDI.
[18] Michael D. Ernst,et al. HaLoop , 2010, Proc. VLDB Endow..
[19] Thomas W. Reps,et al. A categorized bibliography on incremental computation , 1993, POPL '93.
[20] Frank Dabek,et al. Large-scale Incremental Processing Using Distributed Transactions and Notifications , 2010, OSDI.
[21] Randy H. Katz,et al. Improving MapReduce Performance in Heterogeneous Environments , 2008, OSDI.
[22] Pramod Bhatotia,et al. Asymptotic Analysis of Self-Adjusting Contraction Trees , 2016, ArXiv.
[23] Zhengping Qian,et al. TimeStream: reliable stream computation in the cloud , 2013, EuroSys '13.
[24] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[25] Akshat Verma,et al. Shredder: GPU-accelerated incremental storage and computation , 2012, FAST.
[26] William Pugh,et al. Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.
[27] Robert Harper. Self-adjusting computation , 2004, LICS 2004.
[28] Yuan Yu,et al. Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.
[29] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[30] Srikanth Kandula,et al. PACMan: Coordinated Memory Caching for Parallel Jobs , 2012, NSDI.
[31] Bingsheng He,et al. Comet: batched stream processing for data intensive distributed computing , 2010, SoCC '10.
[32] Guy E. Blelloch,et al. Traceable data types for self-adjusting computation , 2010, PLDI '10.
[33] Michael Isard,et al. DryadInc: Reusing Work in Large-scale Computations , 2009, HotCloud.
[34] Roberto Tamassia,et al. Dynamic algorithms in computational geometry , 1992, Proc. IEEE.
[35] Eric A. Brewer,et al. Highly available, fault-tolerant, parallel dataflows , 2004, SIGMOD '04.
[36] M. Abadi,et al. Naiad: a timely dataflow system , 2013, SOSP.
[37] Andreas Haeberlen,et al. Reliable Client Accounting for P2P-Infrastructure Hybrids , 2012, NSDI.
[38] Michael Stonebraker,et al. Fault-tolerance in the borealis distributed stream processing system , 2008, ACM Trans. Database Syst..