Isotope-selective photoionization for calcium ion trapping

We present studies of resonance-enhanced photoionization for isotope-selective loading of ${\mathrm{Ca}}^{+}$ into a Paul trap. The ${4s}^{2}{}^{1}{S}_{0}\ensuremath{\leftrightarrow}4s4p{}^{1}{P}_{1}$ transition of neutral calcium is driven by a 423 nm laser and the atoms are photoionized by a second laser at 389 nm. Isotope selectivity is achieved by using crossed atomic and laser beams to reduce the Doppler width significantly below the isotope shifts in the 423 nm transition. The loading rate of ions into the trap is studied under a range of experimental parameters for the abundant isotope ${}^{40}{\mathrm{Ca}}^{+}.$ Using the fluorescence of the atomic beam at 423 nm as a measure of the Ca number density, we estimate a lower limit for the absolute photoionization cross section of 170(60) Mb. We achieve loading and laser cooling of all the naturally occurring isotopes, without the need for enriched sources. Laser heating/cooling is observed to enhance the isotope selectivity. In the case of the rare species ${}^{43}{\mathrm{Ca}}^{+}$ and ${}^{46}{\mathrm{Ca}}^{+},$ which have not previously been laser cooled, the loading is not fully isotope selective, but we show that pure crystals of ${}^{43}{\mathrm{Ca}}^{+}$ may nevertheless be obtained. We find that for loading ${}^{40}{\mathrm{Ca}}^{+}$ the 389 nm laser may be replaced by an incoherent source.

[1]  Christoph Becher,et al.  The coherence of qubits based on single Ca+ions , 2003 .

[2]  J. Mitroy Energy levels and oscillator strengths for neutral calcium , 1993 .

[3]  F. Schmidt-Kaler,et al.  Coherent coupling of a single 40Ca+ ion to a high-finesse optical cavity , 2003 .

[4]  F. Schmidt-Kaler,et al.  Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments , 2001 .

[5]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[6]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[7]  W. Nörtershäuser,et al.  Isotope shifts and hyperfine structure in the transitions of stable calcium isotopes and calcium-41 , 1998 .

[8]  A. M. Thommesen,et al.  Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization , 2000 .

[9]  Klein,et al.  Isotope shifts and nuclear-charge radii in singly ionized 40-48Ca. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[11]  D. M. Lucas,et al.  Precision Measurement of the Lifetime of the 3d 2 D 5/2 state in 40 Ca + , 2000 .

[12]  L. Deslauriers,et al.  Sympathetic cooling of trapped Cd + isotopes , 2002 .

[13]  G. Werth,et al.  PRECISION NUCLEAR MEASUREMENTS WITH ION TRAPS , 2003 .

[14]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[15]  G. Smith,et al.  Collision broadening and shift in the resonance line of calcium , 1972 .

[16]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[17]  G. Werth,et al.  Isotope separation by nonlinear resonances in a Paul trap , 1996 .

[18]  F. Plumelle,et al.  Prospect for a Ca/sup +/ optical frequency/wavelength standard , 1993 .

[19]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[20]  R. Blatt,et al.  The “Trapped State” of a Trapped Ion—Line Shifts and Shape , 1992 .

[21]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[22]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[23]  Oxford ion-trap quantum computing project , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  P. Bowe,et al.  SYMPATHETIC CRYSTALLIZATION OF TRAPPED IONS , 1999 .

[25]  K. Hayasaka,et al.  Deterministic coupling of single ions to an optical cavity , 2003 .

[26]  Geoffrey P. Barwood,et al.  Polarisation-dependent optical pumping for interrogation of a magnetic-field-independent “clock” transition in laser-cooled trapped 87Sr+ , 2000 .

[27]  K. Blaum,et al.  Isotope shifts and hyperfine structure in the transitions in calcium II , 1998 .

[28]  I. Barin Thermochemical data of pure substances , 1989 .