New width parameters for SAT and #SAT

Abstract We study the parameterized complexity of the propositional satisfiability (SAT) and the more general model counting (#SAT) problems and obtain novel fixed-parameter algorithms that exploit the structural properties of input formulas. In the first part of the paper, we parameterize by the treewidth of the following two graphs associated with CNF formulas: the consensus graph and the conflict graph. Both graphs have as vertices the clauses of the formula; in the consensus graph two clauses are adjacent if they do not contain a complementary pair of literals, while in the conflict graph two clauses are adjacent if they do contain a complementary pair of literals. We show that #SAT is fixed-parameter tractable when parameterized by the treewidth of the former graph, but SAT is W[1]-hard when parameterized by the treewidth of the latter graph. In the second part of the paper, we turn our attention to a novel structural parameter we call h-modularity which is loosely inspired by the well-established notion of community structure. The new parameter is defined in terms of a partition of clauses of the given CNF formula into strongly interconnected communities which are sparsely interconnected with each other. Each community forms a hitting formula, whereas the interconnections between communities form a graph of small treewidth. Our algorithms first identify the community structure and then use them for an efficient solution of SAT and #SAT, respectively.

[1]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[2]  Daniël Paulusma,et al.  Model Counting for CNF Formulas of Bounded Modular Treewidth , 2015, Algorithmica.

[3]  Peter L. Hammer,et al.  Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.

[4]  Philipp Zumstein,et al.  How Many Conflicts Does It Need to Be Unsatisfiable? , 2008, SAT.

[5]  Frank Harary,et al.  Graph Theory , 2016 .

[6]  Hans Kleine Büning,et al.  On the structure of some classes of minimal unsatisfiable formulas , 2003, Discret. Appl. Math..

[7]  Hans Kleine Büning,et al.  Minimal Unsatisfiability and Autarkies , 2009, Handbook of Satisfiability.

[8]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[9]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Toniann Pitassi,et al.  Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[11]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[12]  Marko Samer,et al.  Algorithms for propositional model counting , 2007, J. Discrete Algorithms.

[13]  Georg Gottlob,et al.  Fixed-parameter complexity in AI and nonmonotonic reasoning , 1999, Artif. Intell..

[14]  Toniann Pitassi,et al.  Solving #SAT and Bayesian Inference with Backtracking Search , 2014, J. Artif. Intell. Res..

[15]  Sebastian Fischmeister,et al.  Impact of Community Structure on SAT Solver Performance , 2014, SAT.

[16]  Zhaohui Wu,et al.  Online Community Detection for Large Complex Networks , 2013, IJCAI.

[17]  Naomi Nishimura,et al.  Solving #SAT using vertex covers , 2006, Acta Informatica.

[18]  Hans Kleine Büning,et al.  Satisfiable Formulas Closed Under Replacement , 2001, Electron. Notes Discret. Math..

[19]  Moshe Y. Vardi Boolean satisfiability , 2014, Commun. ACM.

[20]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[21]  Robert Ganian,et al.  Community Structure Inspired Algorithms for SAT and #SAT , 2015, SAT.

[22]  Oliver Kullmann,et al.  The Combinatorics of Conflicts between Clauses , 2003, SAT.

[23]  Stefan Rümmele,et al.  Tractable answer-set programming with weight constraints: bounded treewidth is not enough* , 2010, Theory and Practice of Logic Programming.

[24]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[26]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[27]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[28]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[29]  Georg Gottlob,et al.  Bounded treewidth as a key to tractability of knowledge representation and reasoning , 2006, Artif. Intell..

[30]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[31]  Daniël Paulusma,et al.  Satisfiability of acyclic and almost acyclic CNF formulas , 2011, Theor. Comput. Sci..

[32]  Maria Luisa Bonet,et al.  The Fractal Dimension of SAT Formulas , 2013, IJCAR.

[33]  Stefan Szeider,et al.  Algorithms and complexity results for persuasive argumentation , 2010, Artif. Intell..

[34]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[35]  Robert Ganian,et al.  Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width , 2010, Fundam. Informaticae.

[36]  Kazuo Iwama,et al.  CNF Satisfiability Test by Counting and Polynomial Average Time , 1989, SIAM J. Comput..

[37]  Paul E. Dunne,et al.  Computational properties of argument systems satisfying graph-theoretic constraints , 2007, Artif. Intell..

[38]  Marko Samer,et al.  Constraint satisfaction with bounded treewidth revisited , 2010, J. Comput. Syst. Sci..

[39]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[40]  Stefan Woltran,et al.  The Impact of Treewidth on ASP Grounding and Solving , 2017, IJCAI.

[41]  Oliver Kullmann,et al.  Lean clause-sets: generalizations of minimally unsatisfiable clause-sets , 2003, Discret. Appl. Math..

[42]  Jan Arne Telle,et al.  Solving #SAT and MAXSAT by Dynamic Programming , 2015, J. Artif. Intell. Res..

[43]  Stanislav Zivny,et al.  The Complexity of Valued Constraint Satisfaction Problems , 2012, Cognitive Technologies.

[44]  Robert Ganian,et al.  The Complexity Landscape of Decompositional Parameters for ILP , 2016, AAAI.

[45]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[46]  Henry A. Kautz,et al.  Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.

[47]  Marko Samer,et al.  Fixed-Parameter Tractability , 2021, Handbook of Satisfiability.

[48]  Robert Ganian,et al.  New Width Parameters for Model Counting , 2017, SAT.

[49]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[50]  Oliver Kullmann,et al.  Polynomial Time SAT Decision, Hypergraph Transversals and the Hermitian Rank , 2004, SAT.

[51]  Bart Selman,et al.  Model Counting , 2021, Handbook of Satisfiability.

[52]  Stefan Szeider,et al.  Citation for Published Item: Use Policy Minimal Unsatisfiable Formulas with Bounded Clause-variable Difference Are Fixed-parameter Tractable , 2022 .

[53]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[54]  Stefan Szeider,et al.  Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference , 2002, Theor. Comput. Sci..

[55]  Martin Fürer,et al.  Faster integer multiplication , 2007, STOC '07.

[56]  Robert Ganian,et al.  Going Beyond Primal Treewidth for (M)ILP , 2017, AAAI.

[57]  Moshe Y. Vardi Moore's law and the sand-heap paradox , 2014, CACM.