Robust Luenberger Observers for Microalgal Cultures

Abstract The advanced control of microalgal cultures usually requires the knowledge of several component concentrations, which are however not always measurable on-line. In this context, state estimation plays an important role, and software sensors should be robust to model uncertainties and measurement noise. In this study, two software sensors are designed in the form of extended Luenberger observers, using Lyapunov arguments and linear matrix inequalities (LMI). These observers are based on Droop model and a few available on-line sensors. The first observer design estimates the intracellular quota and substrate concentrations considering a linear differential inclusion modeling technique and a constant observer gain. On the other hand, the second one estimates only the intracellular quota concentration assuming uncertainties in the model parameters and a quasi-Linear Parameter Varying (quasi-LPV) representation of the nonlinear system. The results are presented considering simulated and experimental data from Dunaliella tertiolecta culture.

[1]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[2]  F. G. Acién,et al.  Dynamic model of microalgal production in tubular photobioreactors. , 2012, Bioresource technology.

[3]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[4]  A. Vande Wouwer,et al.  DISCRETE-TIME INTERVAL OBSERVERS APPLIED TO CULTURES OF PHYTOPLANKTON , 2007 .

[5]  Lihua Xie,et al.  Output feedback H∞ control of systems with parameter uncertainty , 1996 .

[6]  O. Bernard Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production , 2011 .

[7]  Philippe Bogaerts,et al.  Monitoring of bioprocesses: mechanistic and data-driven approaches , 2009 .

[8]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[9]  M. R. Droop,et al.  Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake, Growth and Inhibition in Monochrysis Lutheri , 1968, Journal of the Marine Biological Association of the United Kingdom.

[10]  Minyue Fu,et al.  Robust nonlinear H∞ filtering , 1996, Autom..

[11]  Olivier Bernard,et al.  Estimation of neutral lipid and carbohydrate quotas in microalgae using adaptive interval observers , 2013, Bioprocess and Biosystems Engineering.

[12]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[13]  Shengyuan Xu,et al.  Robust H ∞ filtering for a class of non-linear systems with state delay and parameter uncertainty , 2002 .

[14]  Olivier Bernard,et al.  Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. , 2010, Journal of theoretical biology.

[15]  M. R. Droop,et al.  25 Years of Algal Growth Kinetics A Personal View , 1983 .

[16]  James B. Rawlings,et al.  Application of MHE to large-scale nonlinear processes with delayed lab measurements , 2015, Comput. Chem. Eng..

[17]  R. Kalman,et al.  New results in linear prediction and filtering theory Trans. AMSE , 1961 .

[18]  Philippe Bogaerts,et al.  A hybrid asymptotic-Kalman observer for bioprocesses , 1999 .

[19]  D. Luenberger Observers for multivariable systems , 1966 .

[20]  Guillaume Goffaux,et al.  Bioprocess State Estimation: Some Classica l and Less Classical Approache s , 2005 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Denis Dochain,et al.  On-line estimation of microbial specific growth rates , 1986, Autom..

[23]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[24]  Qing Zhao,et al.  H/sub /spl infin// observer design for lipschitz nonlinear systems , 2006, IEEE Transactions on Automatic Control.

[25]  A. Vande Wouwer,et al.  Improving continuous–discrete interval observers with application to microalgae-based bioprocesses , 2009 .

[26]  Daniel Coutinho,et al.  A robust non-linear feedback control strategy for a class of bioprocesses , 2013 .

[27]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[28]  Anne-Lise Hantson,et al.  Parameter identification of Droop model: an experimental case study , 2015, Bioprocess and Biosystems Engineering.

[29]  S. Pettersson,et al.  Linear parameter-varying descriptions of nonlinear systems , 2004, Proceedings of the 2004 American Control Conference.

[30]  Ph Bogaerts,et al.  Software sensors for bioprocesses. , 2003, ISA transactions.

[31]  Daniel Coutinho,et al.  A Robust H∞ Quasi-LPV Approach for Designing Nonlinear Observers , 2010 .

[32]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .