An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container

Abstract In this paper we propose a simple recursive uniform algorithm for the problem of packing n -dimensional boxes into an n -container. We are particularly concerned about the special case n =3 where the boxes can be packed in a given subset of their six possible positionings. Our method studies symmetries in the packings by the use of an ordered set of three directed graphs with the same edges (a 3- tet or triad ) and induced smaller structures of the same kind named minors . With the method, degeneracy and symmetry issues, which curtail the implicit enumeration to practically acceptable running times, become transparent. In order to illustrate the performance of the algorithm, computational results from solving randomly generated 3-D examples are presented and compared with the ones of a layers and knapsack approach. The present study has real world applications for the problems of pallet and container loading.

[1]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[2]  Eberhard E. Bischoff,et al.  A comparative evaluation of heuristics for container loading , 1990 .

[3]  E. E. Bischoff,et al.  Loading Multiple Pallets , 1995 .

[4]  Chen-Fu Chien,et al.  A recursive computational procedure for container loading , 1998 .

[5]  G. Abdou,et al.  A SYSTEMATIC APPROACH FOR THE THREE-DIMENSIONAL PALLETIZATION PROBLEM , 1994 .

[6]  William B. Dowsland On a Research Bibliography for Cutting and Packing Problems , 1992 .

[7]  J. C. Herz,et al.  Recursive computational procedure for two-dimensional stock cutting , 1972 .

[8]  Chin-Sheng Chen,et al.  An analytical model for the container loading problem , 1995 .

[9]  M. Arenales,et al.  An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems , 1995 .

[10]  Fuh-Hwa F. Liu,et al.  A three-dimensional pallet loading method for single-size boxes , 1997 .

[11]  Kathryn A. Dowsland,et al.  A family of genetic algorithms for the pallet loading problem , 1996, Ann. Oper. Res..

[12]  Paul E. Sweeney,et al.  Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography , 1992 .

[13]  Reinaldo Morabito,et al.  A simple and effective recursive procedure for the manufacturer's pallet loading problem , 1998, J. Oper. Res. Soc..

[14]  Guntram Scheithauer,et al.  The G4-Heuristic for the Pallet Loading Problem , 1996 .

[15]  Way Kuo,et al.  THREE DIMENSIONAL PALLETIZATION OF MIXED BOX SIZES , 1993 .

[16]  Hermann Gehring,et al.  Ein Tabu Search-Verfahren für Containerbeladeprobleme mit schwach heterogenem Kistenvorrat , 1997 .

[17]  Gerhard Wäscher,et al.  Cutting and packing , 1995, Eur. J. Oper. Res..

[18]  Reinaldo Morabito,et al.  Loading optimization of palletized products on trucks , 2000 .

[19]  Guntram Scheithauer,et al.  4-Block heuristic for the rectangle packing problem , 1998, Eur. J. Oper. Res..

[20]  J. A. George,et al.  A Method for Solving Container Packing for a Single Size of Box , 1992 .

[21]  Josef Neliβen How to use structural constraints to compute an upper bound for the pallet loading problem , 1995 .

[22]  Subir Bhattacharya,et al.  An exact depth-first algorithm for the pallet loading problem , 1998, Eur. J. Oper. Res..

[23]  Andreas Bortfeldt,et al.  A tabu search algorithm for weakly heterogeneous container loading problems , 1998 .

[24]  B. Ram The pallet loading problem: A survey , 1992 .

[25]  W. B. Dowsland Improving palletisation efficiency—the theoretical basis and practical application , 1995 .

[26]  Silvano Martello,et al.  Special Issue of INFOR on Knapsack, Packing And Cutting , 1994 .

[27]  Harald Dyckhoff,et al.  Cutting and packing in production and distribution : a typology and bibliography , 1992 .

[28]  Reinaldo Morabito,et al.  An AND/OR-graph Approach to the Container Loading Problem , 1994 .

[29]  K. Dowsland Some experiments with simulated annealing techniques for packing problems , 1993 .

[30]  K. Dowsland An exact algorithm for the pallet loading problem , 1987 .

[31]  Robert W. Haessler,et al.  Load planning for shipments of low density products , 1990 .