Two-layer particle swarm optimization with intelligent division of labor

Early studies in particle swarm optimization (PSO) algorithm reveal that the social and cognitive components of swarm, i.e. memory swarm, tend to distribute around the problem's optima. Motivated by these findings, we propose a two-layer PSO with intelligent division of labor (TLPSO-IDL) that aims to improve the search capabilities of PSO through the evolution memory swarm. The evolution in TLPSO-IDL is performed sequentially on both the current swarm and the memory swarm. A new learning mechanism is proposed in the former to enhance the swarm's exploration capability, whilst an intelligent division of labor (IDL) module is developed in the latter to adaptively divide the swarm into the exploration and exploitation sections. The proposed TLPSO-IDOL algorithm is thoroughly compared with nine well-establish PSO variants on 16 unimodal and multimodal benchmark problems with or without rotation property. Simulation results indicate that the searching capabilities and the convergence speed of TLPSO-IDL are superior to the state-of-art PSO variants.

[1]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[2]  Konstantinos E. Parsopoulos,et al.  Parallel cooperative micro-particle swarm optimization: A master-slave model , 2012, Appl. Soft Comput..

[3]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[4]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[5]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[6]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[7]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[8]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[9]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[10]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[11]  Robert Sabourin,et al.  Review and Study of Genotypic Diversity Measures for Real-Coded Representations , 2012, IEEE Transactions on Evolutionary Computation.

[12]  Guohai Liu,et al.  Randomization in particle swarm optimization for global search ability , 2011, Expert Syst. Appl..

[13]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[14]  A. B. Dariane,et al.  Performance evaluation of an improved harmony search algorithm for numerical optimization: Melody Search (MS) , 2013, Eng. Appl. Artif. Intell..

[15]  Yang Tang,et al.  Feedback learning particle swarm optimization , 2011, Appl. Soft Comput..

[16]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[18]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[19]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[20]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  Leandro dos Santos Coelho,et al.  A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers , 2012 .

[22]  Péricles B. C. de Miranda,et al.  Dynamic Clan Particle Swarm Optimization , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[23]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[24]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[25]  Carmelo J. A. Bastos Filho,et al.  Clan Particle Swarm Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[26]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[28]  M. A. El-Shorbagy,et al.  Local search based hybrid particle swarm optimization algorithm for multiobjective optimization , 2012, Swarm Evol. Comput..

[29]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[30]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[31]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[32]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[33]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[34]  Mohamed E. El-Hawary,et al.  A Survey of Particle Swarm Optimization Applications in Electric Power Systems , 2009, IEEE Transactions on Evolutionary Computation.

[35]  Victor O. K. Li,et al.  Real-Coded Chemical Reaction Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[36]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[37]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[38]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[39]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[40]  P. N. Suganthan,et al.  A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization , 2012, Inf. Sci..

[41]  Leandro dos Santos Coelho,et al.  Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects , 2008 .

[42]  Moncef Gabbouj,et al.  Multi-dimensional particle swarm optimization for dynamic environments , 2008, 2008 International Conference on Innovations in Information Technology.

[43]  Fuzhen Zhuang,et al.  Particle swarm optimization using dimension selection methods , 2013, Appl. Math. Comput..

[44]  Hao Gao,et al.  Multilevel Thresholding for Image Segmentation Through an Improved Quantum-Behaved Particle Swarm Algorithm , 2010, IEEE Transactions on Instrumentation and Measurement.

[45]  Moncef Gabbouj,et al.  Fractional Particle Swarm Optimization in Multidimensional Search Space , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  Chia-Feng Juang,et al.  Hierarchical Cluster-Based Multispecies Particle-Swarm Optimization for Fuzzy-System Optimization , 2010, IEEE Transactions on Fuzzy Systems.

[47]  Michael G. Epitropakis,et al.  Evolving cognitive and social experience in Particle Swarm Optimization through Differential Evolution: A hybrid approach , 2012, Inf. Sci..

[48]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[49]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[50]  Q. Henry Wu,et al.  A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[51]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications , 2008, Natural Computing.

[52]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[53]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[54]  Carlos Cotta,et al.  A Primer on Memetic Algorithms , 2012, Handbook of Memetic Algorithms.

[55]  Fernando Buarque de Lima Neto,et al.  Adaptive Clan Particle Swarm Optimization , 2011, 2011 IEEE Symposium on Swarm Intelligence.

[56]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[57]  Zengqiang Chen,et al.  New Chaotic PSO-Based Neural Network Predictive Control for Nonlinear Process , 2007, IEEE Transactions on Neural Networks.