Enforcing necessary non-negativity constraints for common diffusion MRI models using sum of squares programming

In this work we investigate the use of sum of squares constraints for various diffusion-weighted MRI models, with a goal of enforcing strict, global non-negativity of the diffusion propagator. We formulate such constraints for the mean apparent propagator model and for spherical deconvolution, guaranteeing strict non-negativity of the corresponding diffusion propagators. For the cumulant expansion similar constraints cannot exist, and we instead derive a set of auxiliary constraints that are necessary but not sufficient to guarantee non-negativity. These constraints can all be verified and enforced at reasonable computational costs using semidefinite programming. By verifying our constraints on standard reconstructions of the different models, we show that currently used weak constraints are largely ineffective at ensuring non-negativity. We further show that if strict non-negativity is not enforced then estimated model parameters may suffer from significant errors, leading to serious inaccuracies in important derived quantities such as the main fiber orientations, mean kurtosis, etc. Finally, our experiments confirm that the observed constraint violations are mostly due to measurement noise, which is difficult to mitigate and suggests that properly constrained optimization should currently be considered the norm in many cases.

[1]  Rachid Deriche,et al.  Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI , 2014, NeuroImage.

[2]  Fernando Zelaya,et al.  High-resolution q-space imaging in porous structures , 1990 .

[3]  Andrea Fuster,et al.  Adjugate Diffusion Tensors for Geodesic Tractography in White Matter , 2015, Journal of Mathematical Imaging and Vision.

[4]  Anthony J. Sherbondy,et al.  ConTrack: finding the most likely pathways between brain regions using diffusion tractography. , 2008, Journal of vision.

[5]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[6]  Bart M. ter Haar Romeny,et al.  Multivalued Geodesic Ray-Tracing for Computing Brain Connections Using Diffusion Tensor Imaging , 2012, SIAM J. Imaging Sci..

[7]  Amir Ali Ahmadi,et al.  DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization , 2017, SIAM J. Appl. Algebra Geom..

[8]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[9]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[10]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[11]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[12]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[13]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[14]  D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[15]  Baba C. Vemuri,et al.  Approximating Symmetric Positive Semidefinite Tensors of Even Order , 2012, SIAM J. Imaging Sci..

[16]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[17]  Cheng Guan Koay,et al.  Least Squares Approaches to Diffusion Tensor Estimation , 2010 .

[18]  Nicholas Ayache,et al.  A Riemannian Framework for the Processing of Tensor-Valued Images , 2005, DSSCV.

[19]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[20]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[21]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Rachid Deriche,et al.  MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data , 2016, NeuroImage.

[23]  Lilah Inzelberg,et al.  Insignificance of active flow for neural diffusion weighted imaging: A negative result , 2017, Magnetic resonance in medicine.

[24]  P. Callaghan,et al.  RAPID COMMUNICATION: NMR microscopy of dynamic displacements: k-space and q-space imaging , 1988 .

[25]  Wenxing Ye,et al.  Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields , 2013, IPMI.

[26]  Baba C. Vemuri,et al.  A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[27]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[28]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[29]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[30]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Kaleem Siddiqi,et al.  Recent advances in diffusion MRI modeling: Angular and radial reconstruction , 2011, Medical Image Anal..

[32]  L. Hörmander Distribution theory and Fourier analysis , 1990 .

[33]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[34]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[35]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[36]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[37]  Rachid Deriche,et al.  Diffeomorphism Invariant Riemannian Framework for Ensemble Average Propagator Computing , 2011, MICCAI.

[38]  Pablo A. Parrilo,et al.  Dimension reduction for semidefinite programs via Jordan algebras , 2016, Math. Program..

[39]  Dmitry S. Novikov,et al.  MesoFT: Unifying Diffusion Modelling and Fiber Tracking , 2014, MICCAI.

[40]  Christian Berg,et al.  Positive definite functions on Abelian semigroups , 1976 .

[41]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[42]  Susanne Schnell,et al.  Global fiber reconstruction becomes practical , 2011, NeuroImage.

[43]  Luc Florack,et al.  Riemann-Finsler Multi-valued Geodesic Tractography for HARDI , 2014, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data.

[44]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[45]  René Vidal,et al.  Estimation of Non-negative ODFs Using the Eigenvalue Distribution of Spherical Functions , 2012, MICCAI.

[46]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[47]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[48]  Carl-Fredrik Westin,et al.  A Hamilton-Jacobi-Bellman Approach to High Angular Resolution Diffusion Tractography , 2005, MICCAI.

[49]  P. Basser,et al.  A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. , 2006, Journal of magnetic resonance.

[50]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[51]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[52]  Rachid Deriche,et al.  A survey of current trends in diffusion MRI for structural brain connectivity , 2016, Journal of neural engineering.

[53]  P. Parrilo,et al.  From coefficients to samples: a new approach to SOS optimization , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[54]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[55]  A. Hanyga,et al.  Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion. , 2012, Journal of magnetic resonance.

[56]  Maxime Descoteaux,et al.  Brain Connectivity Using Geodesics in HARDI , 2009, MICCAI.

[57]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[58]  Carl-Fredrik Westin,et al.  New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space , 2002, MICCAI.

[59]  V. Kiselev,et al.  Effective medium theory of a diffusion‐weighted signal , 2010, NMR in biomedicine.

[60]  Jean B. Lasserre A Sum of Squares Approximation of Nonnegative Polynomials , 2006, SIAM J. Optim..

[61]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[62]  Rachid Deriche,et al.  A Riemannian Framework for Orientation Distribution Function Computing , 2009, MICCAI.

[63]  R. Vidal,et al.  A nonparametric Riemannian framework for processing high angular resolution diffusion images (HARDI) , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Sigurd B. Angenent,et al.  Finsler Active Contours , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[66]  A. Magnani,et al.  Tractable fitting with convex polynomials via sum-of-squares , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[67]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[68]  Kai S Lam The Simple Harmonic Oscillator , 2009 .

[69]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[70]  Andrea Fuster,et al.  Reconstruction of convex polynomial diffusion MRI models using semi-definite programming , 2015 .

[71]  Rachid Deriche,et al.  Nonnegative Definite EAP and ODF Estimation via a Unified Multi-shell HARDI Reconstruction , 2012, MICCAI.

[72]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[73]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[74]  Baba C. Vemuri,et al.  Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI , 2007, IPMI.

[75]  Søren Hauberg,et al.  Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers , 2014, MICCAI.

[76]  M. M. Crum On Positive‐Definite Functions , 1956 .

[77]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[78]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. , 1996, Journal of magnetic resonance.

[79]  Rachid Deriche,et al.  Constrained diffusion kurtosis imaging using ternary quartics & MLE , 2014, Magnetic resonance in medicine.

[80]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[81]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[82]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[83]  Alireza Entezari,et al.  A geometric framework for ensemble average propagator reconstruction from diffusion MRI , 2019, Medical Image Anal..

[84]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[85]  Wenyu Sun,et al.  Positive Semidefinite Generalized Diffusion Tensor Imaging via Quadratic Semidefinite Programming , 2013, SIAM J. Imaging Sci..

[86]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[87]  Carlo Pierpaoli,et al.  TORTOISE v 3 : Improvements and New Features of the NIH Diffusion MRI Processing Pipeline , 2018 .

[88]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[89]  Martijn Froeling,et al.  “MASSIVE” brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation , 2017, Magnetic resonance in medicine.

[90]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[91]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[92]  Partha P. Mitra,et al.  Effects of Finite Gradient-Pulse Widths in Pulsed-Field-Gradient Diffusion Measurements , 1995 .

[93]  V. Kiselev The Cumulant Expansion: An Overarching Mathematical Framework For Understanding Diffusion NMR , 2010 .

[94]  Paul Suetens,et al.  Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model , 2015, NeuroImage.

[95]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[96]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[97]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[98]  Cheng Guan Koay,et al.  Remarks on q-space MR propagator in partially restricted, axially-symmetric, and isotropic environments. , 2009, Magnetic resonance imaging.

[99]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[100]  Timothy Edward John Behrens,et al.  A Bayesian framework for global tractography , 2007, NeuroImage.

[101]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[102]  Cheng Guan Koay,et al.  Simple Harmonic Oscillator Based Reconstruction and Estimation for One-Dimensional q-Space Magnetic Resonance (1D-SHORE) , 2013 .