On the classical limit of a time-dependent self-consistent field system: analysis and computation

We consider a coupled system of Schr\"odinger equations, arising in quantum mechanics via the so-called time-dependent self-consistent field method. Using Wigner transformation techniques we study the corresponding classical limit dynamics in two cases. In the first case, the classical limit is only taken in one of the two equations, leading to a mixed quantum-classical model which is closely connected to the well-known Ehrenfest method in molecular dynamics. In the second case, the classical limit of the full system is rigorously established, resulting in a system of coupled Vlasov-type equations. In the second part of our work, we provide a numerical study of the coupled semi-classically scaled Schr\"odinger equations and of the mixed quantum-classical model obtained via Ehrenfest's method. A second order (in time) method is introduced for each case. We show that the proposed methods allow time steps independent of the semi-classical parameter(s) while still capturing the correct behavior of physical observables. It also becomes clear that the order of accuracy of our methods can be improved in a straightforward way.

[1]  M. Bonitz,et al.  Quantum Hydrodynamics , 2013, 1310.0283.

[2]  Anders Szepessy,et al.  Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfaces , 2013, 1305.3330.

[3]  Rémi Carles,et al.  On Fourier Time-Splitting Methods for Nonlinear Schrödinger Equations in the Semiclassical Limit , 2012, SIAM J. Numer. Anal..

[4]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[5]  Gonca L. Aki,et al.  Classical limit for semirelativistic Hartree systems , 2008, 0810.5457.

[6]  Anders Szepessy,et al.  Langevin molecular dynamics derived from Ehrenfest dynamics , 2007, 0712.3656.

[7]  Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation , 2006 .

[8]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[9]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[10]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[11]  P. Markowich,et al.  Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001, math-ph/0109029.

[12]  H. Spohn,et al.  Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001, math-ph/0104024.

[13]  Karen Drukker,et al.  Basics of Surface Hopping in Mixed Quantum/Classical Simulations , 1999 .

[14]  Folkmar A. Bornemann,et al.  On the Singular Limit of the Quantum-Classical Molecular Dynamics Model , 1999, SIAM J. Appl. Math..

[15]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[16]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[17]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[18]  C. Schütte,et al.  Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .

[19]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[20]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[21]  Abraham Nitzan,et al.  Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems , 1991 .

[22]  Abraham Nitzan,et al.  Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A fast fourier transform study , 1988 .

[23]  M. Ratner,et al.  Mean-field models for molecular states and dynamics: New developments , 1988 .

[24]  Nancy Makri,et al.  Time‐dependent self‐consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments , 1987 .

[25]  Mark A. Ratner,et al.  Exact time‐dependent quantum mechanical dissociation dynamics of I2He: Comparison of exact time‐dependent quantum calculation with the quantum time‐dependent self‐consistent field (TDSCF) approximation , 1987 .

[26]  Mark A. Ratner,et al.  Time‐dependent self‐consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules , 1982 .

[27]  Juergen Hinze,et al.  MC-SCF. I. The multi-configuration self-consistent-field method , 1973 .

[28]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[29]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[30]  C. Sherrill The Multiconfigurational Self-Consistent-Field Method , 2014 .

[31]  Zhennan Zhou,et al.  A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials , 2013, Commun. Inf. Syst..

[32]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[33]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[34]  C. David Levermore,et al.  The Behavior of Solutions of the NLS Equation in the Semiclassical Limit , 1994 .