On the classical limit of a time-dependent self-consistent field system: analysis and computation
暂无分享,去创建一个
[1] M. Bonitz,et al. Quantum Hydrodynamics , 2013, 1310.0283.
[2] Anders Szepessy,et al. Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfaces , 2013, 1305.3330.
[3] Rémi Carles,et al. On Fourier Time-Splitting Methods for Nonlinear Schrödinger Equations in the Semiclassical Limit , 2012, SIAM J. Numer. Anal..
[4] Christof Sparber,et al. Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.
[5] Gonca L. Aki,et al. Classical limit for semirelativistic Hartree systems , 2008, 0810.5457.
[6] Anders Szepessy,et al. Langevin molecular dynamics derived from Ehrenfest dynamics , 2007, 0712.3656.
[7] Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation , 2006 .
[8] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[9] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[10] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[11] P. Markowich,et al. Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001, math-ph/0109029.
[12] H. Spohn,et al. Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001, math-ph/0104024.
[13] Karen Drukker,et al. Basics of Surface Hopping in Mixed Quantum/Classical Simulations , 1999 .
[14] Folkmar A. Bornemann,et al. On the Singular Limit of the Quantum-Classical Molecular Dynamics Model , 1999, SIAM J. Appl. Math..
[15] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[16] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[17] William H. Miller,et al. Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .
[18] C. Schütte,et al. Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .
[19] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[20] Norbert J. Mauser,et al. THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .
[21] Abraham Nitzan,et al. Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems , 1991 .
[22] Abraham Nitzan,et al. Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A fast fourier transform study , 1988 .
[23] M. Ratner,et al. Mean-field models for molecular states and dynamics: New developments , 1988 .
[24] Nancy Makri,et al. Time‐dependent self‐consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments , 1987 .
[25] Mark A. Ratner,et al. Exact time‐dependent quantum mechanical dissociation dynamics of I2He: Comparison of exact time‐dependent quantum calculation with the quantum time‐dependent self‐consistent field (TDSCF) approximation , 1987 .
[26] Mark A. Ratner,et al. Time‐dependent self‐consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules , 1982 .
[27] Juergen Hinze,et al. MC-SCF. I. The multi-configuration self-consistent-field method , 1973 .
[28] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[29] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[30] C. Sherrill. The Multiconfigurational Self-Consistent-Field Method , 2014 .
[31] Zhennan Zhou,et al. A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials , 2013, Commun. Inf. Syst..
[32] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[33] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[34] C. David Levermore,et al. The Behavior of Solutions of the NLS Equation in the Semiclassical Limit , 1994 .