DENDROPHANES : WATER-SOLUBLE DENDRITIC RECEPTORS AS MODELS FOR BURIED RECOGNITION SITES IN GLOBULAR PROTEINS

Water-soluble dendritic cyclophanes (dendrophanes) of first (1, 4), second (25), and third generation (36) with poly(ether amide) branching and 12, 36, and 108 terminal carboxylate groups, respectively, were prepared by divergent synthesis, and their molecular recognition properties in aqueous solutions were investigated. Dendrophanes 1–3 incorporate as the initiator core a tetraoxa[6.1.6.1]paracyclophane 7 with a suitably sized cavity for inclusion complexation of benzene or naphthalene derivatives. The initiator core in 4–6 is the [6.1.6.1]cyclo-phane 8 shaped by two naphthyl(phenyl) methane units with a cavity suitable for steroid incorporation. The syntheses of 1–6 involved sequential peptide coupling to monomer 9, followed by ester hydrolysis (Schemes 1 and 4), Purification by gel-permeation chromatography (GPC; Fig. 3) and full spectral characterization were accomplished at the stage of the intermediate poly(methyl carboxylates) 10–12 and 23–25, respectively. The third-generation 108-ester 25 was also independently prepared by a semi-convergent synthetic strategy, starting from 4 (Scheme 5). All dendrophanes with terminal ester groups were obtained in pure form according to the 13C-NMR spectral criterion (Figs, 1 and 5). The MALDI-TOF mass spectra of the third-generation derivative 25 (mol. wt. 19328 D) displayed the molecular ion as base peak, accompanied by a series of ions [M – n(1041 ± 7)]+, tentatively assigned as characteristic fragment ions of the poly(ether amide) cascade. A similar fragmentation pattern was also observed in the spectra of other higher-generation poly(ether amide) dendrimers. Attempts to prepare monodisperse fourth-generation dendrophanes by divergent synthesis failed. 1H-NMR and fluorescence binding titrations in basic aqueous buffer solutions showed that dendrophanes 1–3 complexed benzene and naphthalene derivatives, whereas 4–6 bound the steroid testosterone. Complexation occurred exclusively at the cavity-binding site of the central cyclophane core rather than in fluctuating voids in the dendritic branches, and the association strength was similar to that of the complexes formed by the initiator cores 7 and 8, respectively (Tables 1 and 3). Fluorescence titrations with 6-(p-toluidino)naphthalene-2-sulfonate as fluorescent probe in aqueous buffer showed that the micropolarity at the cyclophane core in dendrophanes 1-3 becomes increasingly reduced with increasing size and density of the dendritic superstructure; the polarity at the core of the third-generation compound 3 is similar to that of EtOH (Table 2). Host-guest exchange kinetics were remarkably fast and, except for receptor 3, the stabilities of all dendrophane complexes could be evaluated by 1H-NMR titrations. The rapid complexation-decomplexation kinetics are explained by the specific attachment of the dendritic wedges to large, nanometer-sized cyclophane initiator cores, which generates apertures in the surrounding dendritic superstructure.

[1]  F. Diederich,et al.  New Cyclophanes as Initiator Cores for the Construction of Dendritic Receptors: Host‐guest complexation in aqueous solutions and structures of solid‐state inclusion compounds , 1997 .

[2]  F. Diederich,et al.  Macrocyclization on the fullerene core: Direct regio‐ and diastereoselective multi‐functionalization of [60]fullerene, and synthesis of fullerene‐dendrimer derivatives , 1997 .

[3]  F. Diederich,et al.  Dendrimers with Porphyrin Cores: Synthetic Models for Globular Heme Proteins , 1997 .

[4]  F. Diederich,et al.  Catalytic Cyclophanes. Part XI. A flavo‐thiazolio‐cyclophane as a biomimetic catalyst for the preparative‐scale electro‐oxidation of aromatic aldehydes to methyl esters , 1997 .

[5]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[6]  S. Zimmerman Dendrimers in molecular recognition and self-assembly , 1997 .

[7]  J. V. Hest,et al.  Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles , 1996 .

[8]  D. Reinhoudt,et al.  Molecular boxes based on calix[4]arene double rosettes , 1996 .

[9]  D. Reinhoudt,et al.  Molekulare Kästen auf der Basis von Calix[4]aren-Doppelrosetten , 1996 .

[10]  D. Reinhoudt,et al.  Kontrollierter Aufbau nanometergroßer, metallorganischer Dendrimere , 1996 .

[11]  P. Russo,et al.  Light scattering and fluorescence photobleaching recovery study of poly(amidoamine) cascade polymers in aqueous solution , 1996 .

[12]  F. Diederich,et al.  Dendrophanes: Novel Steroid‐Recognizing Dendritic Receptors. Preliminary Communication , 1996 .

[13]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[14]  J. B. Lambert,et al.  First-Generation Dendritic Polysilanes , 1996 .

[15]  F. Diederich,et al.  Water‐Soluble Dendritic Iron Porphyrins: Synthetic Models of Globular Heme Proteins , 1996 .

[16]  Peter J. Dandliker,et al.  Wasserlösliche dendritische Eisenporphyrine: synthetische Modelle für globuläre Häm‐Proteine , 1995 .

[17]  F. Diederich,et al.  Dendrophanes: Water‐Soluble Dendritic Receptors. Preliminary communication , 1995 .

[18]  S. Shinkai,et al.  Synthesis and metal-binding properties of oligo-calixarenes. an approach towards the calix[4]arene-based dendrimers , 1995 .

[19]  J. Fréchet,et al.  Nanoscopic supermolecules with linear-dendritic architecture: Their preparation and their supramolecular behavior , 1995 .

[20]  G. Newkome,et al.  Supramolecular chemistry of cascade polymers: Construction, molecular inclusion, and inorganic connectivity , 1995 .

[21]  E. Meijer,et al.  Triplet radical pairs of 3‐carboxyproxyl encapsulated in a dendritic box , 1995 .

[22]  E. Meijer,et al.  The dendritic box, shape-selective liberation of encapsulated guests , 1995 .

[23]  F. Jansen,et al.  Promising new precursors for the CVD of gold , 1995 .

[24]  C. Stern,et al.  SYNTHESIS AND STRUCTURE OF A DENDRITIC POLYSILANE , 1995 .

[25]  J. B. Lambert,et al.  Synthese und Struktur eines dendritischen Polysilans , 1995 .

[26]  C. Reichardt,et al.  Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .

[27]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[28]  F. Diederich,et al.  Dendritic Porphyrins: Modulating Redox Potentials of Electroactive Chromophores with Pendant Multifunctionality , 1994 .

[29]  François Diederich,et al.  Dendritische Porphyrine: Modulation des Redoxpotentials elektroaktiver Chromophore durch periphere Multifunktionalität , 1994 .

[30]  C. Wilkins,et al.  Analysis of hydrocarbon dendrimers by laser desorption time-of-flight and fourier transform mass spectrometry , 1994, Journal of the American Society for Mass Spectrometry.

[31]  R. Ostrander,et al.  Synthesis of an Organosilicon Dendrimer Containing 324 Si-H Bonds , 1994 .

[32]  Charles S. Johnson,et al.  "Smart" Cascade Polymers. Modular Syntheses of Four-Directional Dendritic Macromolecules with Acidic, Neutral, or Basic Terminal Groups and the Effect of pH Changes on Their Hydrodynamic Radii , 1994 .

[33]  F. Vögtle,et al.  Dendrimere und Dendrimer‐Bausteine mit trisubstituiertem Benzol und “Hexacyclen” als Kern , 1994 .

[34]  C. Hawker,et al.  The Convergent Route to Globular Dendritic Macromolecules: A Versatile Approach to Precisely Functionauzed Three-Dimensional Polymers and Novel Block Copolymers , 1994 .

[35]  David C. Martin,et al.  Electron microscopy and diffraction of crystalline dendrimers and macrocycles , 1993 .

[36]  Jean M. J. Fréchet,et al.  Unsymmetrical three-dimensional macromolecules: preparation and characterization of strongly dipolar dendritic macromolecules , 1993 .

[37]  F. Diederich,et al.  Catalytic Cyclophanes. Part IX. A Thiazolio‐cyclophane as Model for Pyruvate Oxidase and One‐Pot Synthesis of Aromatic Esters by Electrochemical Oxidation of Aldehydes Mediated by Bis(coenzyme) Catalysis , 1993 .

[38]  C. Hawker,et al.  Solvatochromism as a Probe of the Microenvironment in Dendritic Polyethers: Transition from an Extended to a Globular Structure , 1993 .

[39]  W. Kühn‐Velten,et al.  Characterization of the hydrophobic interaction of steroids with endoplasmic reticulum membranes by quenching of 6,8(14)-bis-dehydro-17 alpha-hydroxyprogesterone fluorescence. , 1993, Biochimica et biophysica acta.

[40]  Xiaofeng Lin,et al.  SYMMETRICAL FOUR-DIRECTIONAL, POLY(ETHER-AMIDE) CASCADE POLYMERS , 1991 .

[41]  Gregory R. Baker,et al.  Alkan‐Kaskadenpolymere mit einer Micellen‐Topologie: Micellansäure‐Derivate , 1991 .

[42]  Andrew L. Johnson,et al.  Alkane Cascade Polymers Possessing Micellar Topology: Micellanoic Acid Derivatives , 1991 .

[43]  G. Newkome,et al.  Silvanols: Water-soluble calixarenes , 1991 .

[44]  Xiaofeng Lin,et al.  Polytryptophane terminated dendritic macromolecules , 1991 .

[45]  C. Hawker,et al.  Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules , 1990 .

[46]  Young Hwan Kim,et al.  Water soluble hyperbranched polyphenylene: "a unimolecular micelle?" , 1990 .

[47]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[48]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[49]  T. Ebbesen,et al.  Role of specific solvation in the fluorescence sensitivity of 1,8-ANS to water , 1989 .

[50]  F. Diederich,et al.  Designed water-soluble macrocyclic esterases: from nonproductive to productive binding , 1988 .

[51]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[52]  François Diederich Cyclophane zur Komplexierung von Neutralmolekülen , 1988 .

[53]  R. Palluk,et al.  The binding of fluorescent 4,6,8(14)-triene-3-one steroids to cyclodextrins as a model for steroid-protein interactions. , 1987, Biochimica et biophysica acta.

[54]  R. Kassner,et al.  A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. , 1973, Journal of the American Chemical Society.

[55]  L. Brand,et al.  Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalenesulfonates. , 1968, Biochemistry.