Isogeometric Residual Minimization Method (iGRM) with direction splitting for non-stationary advection-diffusion problems

Abstract In this paper, we propose a novel computational implicit method, which we call Isogeometric Residual Minimization (iGRM) with direction splitting. The method mixes the benefits resulting from isogeometric analysis, implicit dynamics, residual minimization, and alternating direction solver. We utilize tensor product B-spline basis functions in space, implicit second order time integration schemes, residual minimization in every time step, and we exploit Kronecker product structure of the matrix to employ linear computational cost alternating direction solver. We implement an implicit time integration scheme and apply, for each space-direction, a stabilized mixed method based on residual minimization. We show that the resulting system of linear equations has a Kronecker product structure, which results in a linear computational cost of the direct solver, even using implicit time integration schemes together with the stabilized mixed formulation. We test our method on three advection–diffusion computational examples, including model “membrane” problem, the circular wind problem, and the simulations modeling pollution propagating from a chimney.

[1]  Maciej Paszyński,et al.  Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations , 2017 .

[2]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[3]  Jesse Chan,et al.  A dual Petrov-Galerkin finite element method for the convection-diffusion equation , 2014, Comput. Math. Appl..

[4]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[5]  Victor M. Calo,et al.  Residual Minimization for Isogeometric Analysis in Reduced and Mixed Forms , 2019, ICCS.

[6]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[7]  Agustí Pérez-Foguet,et al.  Adaptive finite element simulation of stack pollutant emissions over complex terrains , 2013 .

[8]  Victor M. Calo,et al.  Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls , 2012 .

[9]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[10]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[11]  Victor M. Calo,et al.  Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow , 2008 .

[12]  Rob Stevenson,et al.  A robust Petrov-Galerkin discretisation of convection-diffusion equations , 2014, Comput. Math. Appl..

[13]  Leszek Demkowicz,et al.  An h–p Taylor—Galerkin finite method for compressible Euler equations , 1991 .

[14]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[15]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[16]  Norbert Heuer,et al.  A robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms , 2014, Comput. Math. Appl..

[17]  David Young,et al.  Alternating Direction Implicit Methods , 1962, Adv. Comput..

[18]  Wolfgang Dahmen,et al.  On the stability of DPG formulations of transport equations , 2015, Math. Comput..

[19]  Witold Dzwinel,et al.  Application of fast isogeometric L2 projection solver for tumor growth simulations , 2017 .

[20]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[21]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[22]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[23]  G. Habetler,et al.  An Alternating-Direction-Implicit Iteration Technique , 1960 .

[24]  Norbert Heuer,et al.  Robust DPG Method for Convection-Dominated Diffusion Problems , 2013, SIAM J. Numer. Anal..

[25]  Jean-Luc Guermond,et al.  A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting , 2010 .

[26]  Victor M. Calo,et al.  Dynamics with Matrices Possessing Kronecker Product Structure , 2015, ICCS.

[27]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[28]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[29]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[30]  Victor M. Calo,et al.  Isogeometric Variational Multiscale Large-Eddy Simulation of Fully-developed Turbulent Flow over a Wavy Wall , 2012 .

[31]  Jesse Chan,et al.  Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems , 2014, Comput. Math. Appl..

[32]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[33]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[34]  Victor M. Calo,et al.  A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high‐order B‐spline finite elements , 2012 .

[35]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[36]  Victor M. Calo,et al.  Parallel Fast Isogeometric Solvers for Explicit Dynamics , 2017, Comput. Informatics.

[37]  Keshav Pingali,et al.  IGA-ADS: Isogeometric analysis FEM using ADS solver , 2017, Comput. Phys. Commun..

[38]  Victor M. Calo,et al.  Fast isogeometric solvers for explicit dynamics , 2014 .

[39]  Norbert Heuer,et al.  A Time-Stepping DPG Scheme for the Heat Equation , 2016, Comput. Methods Appl. Math..

[40]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[41]  Victor M. Calo,et al.  Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients , 2015, J. Comput. Appl. Math..

[42]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[43]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[44]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[45]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[46]  L. Demkowicz,et al.  Discrete least-squares finite element methods , 2017, 1705.02078.

[47]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .