Circuit Obfuscation Using Braids

An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized circuits that are hard to understand. Efficient obfuscators would have many applications in cryptography. Until recently, theoretical progress has mainly been limited to no-go results. Recent works have proposed the first efficient obfuscation algorithms for classical logic circuits, based on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on computationally universal groups with efficiently computable normal forms, and appears to be incomparable with existing definitions. We describe universal gate sets for both classical and quantum computation, in which our definition of obfuscation can be met by polynomial-time algorithms. We also discuss some potential applications to testing quantum computers. We stress that the cryptographic security of these obfuscators, especially when composed with translation from other gate sets, remains an open question.

[1]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[2]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[3]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[4]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[5]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[6]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[7]  Alexander Russell,et al.  Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups , 2012, ArXiv.

[8]  Eric D. Simonaire Sub-Circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems , 2012 .

[9]  Gorjan Alagic,et al.  Classical Simulation of Yang-Baxter Gates , 2014, Theory of Quantum Computation, Communication, and Cryptography.

[10]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[11]  Yong Zhang,et al.  Fast amplification of QMA , 2009, Quantum Inf. Comput..

[12]  J. González-Meneses Basic results on braid groups , 2010, 1010.0321.

[13]  Dennis Hofheinz,et al.  A Practical Attack on Some Braid Group Based Cryptographic Primitives , 2003, Public Key Cryptography.

[14]  Bill Fefferman,et al.  Pseudorandom generators and the BQP vs. PH problem , 2010, ArXiv.

[15]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[16]  Pawel Wocjan,et al.  "Identity check" is QMA-complete , 2003 .

[17]  E. V. Huntington Sets of independent postulates for the algebra of logic , 1904 .

[18]  J. Hietarinta All solutions to the constant quantum Yang-Baxter equation in two dimensions , 1992, hep-th/9210067.

[19]  Carlos Mochon Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .

[20]  J. Watrous,et al.  Quantum Arthur-Merlin games , 2004 .

[21]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[24]  Emil Artin,et al.  Theorie der Zöpfe , 1925 .

[25]  Robert König,et al.  Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation , 2010 .

[26]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[27]  R. Ansorge Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .

[28]  Stephen P. Jordan,et al.  Strong equivalence of reversible circuits is coNP-complete , 2013, Quantum Inf. Comput..

[29]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[30]  Guy N. Rothblum,et al.  On Best-Possible Obfuscation , 2007, TCC.

[31]  Christian S. Collberg,et al.  Watermarking, Tamper-Proofing, and Obfuscation-Tools for Software Protection , 2002, IEEE Trans. Software Eng..

[32]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[33]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[35]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[38]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[39]  L. Kauffmann Knots and physics , 1989 .

[40]  Yahiko Kambayashi,et al.  Transformation rules for designing CNOT-based quantum circuits , 2002, DAC '02.

[41]  Patrick Dehornoy Efficient solutions to the braid isotopy problem , 2008, Discret. Appl. Math..

[42]  Matthias Troyer,et al.  A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.