Circuit Obfuscation Using Braids
暂无分享,去创建一个
[1] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[2] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[3] A. Kitaev. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[4] Michael Larsen,et al. A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.
[5] Scott Aaronson,et al. BQP and the polynomial hierarchy , 2009, STOC '10.
[6] John Preskill,et al. Topological Quantum Computation , 1998, QCQC.
[7] Alexander Russell,et al. Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups , 2012, ArXiv.
[8] Eric D. Simonaire. Sub-Circuit Selection and Replacement Algorithms Modeled as Term Rewriting Systems , 2012 .
[9] Gorjan Alagic,et al. Classical Simulation of Yang-Baxter Gates , 2014, Theory of Quantum Computation, Communication, and Cryptography.
[10] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[11] Yong Zhang,et al. Fast amplification of QMA , 2009, Quantum Inf. Comput..
[12] J. González-Meneses. Basic results on braid groups , 2010, 1010.0321.
[13] Dennis Hofheinz,et al. A Practical Attack on Some Braid Group Based Cryptographic Primitives , 2003, Public Key Cryptography.
[14] Bill Fefferman,et al. Pseudorandom generators and the BQP vs. PH problem , 2010, ArXiv.
[15] F. A. Garside,et al. THE BRAID GROUP AND OTHER GROUPS , 1969 .
[16] Pawel Wocjan,et al. "Identity check" is QMA-complete , 2003 .
[17] E. V. Huntington. Sets of independent postulates for the algebra of logic , 1904 .
[18] J. Hietarinta. All solutions to the constant quantum Yang-Baxter equation in two dimensions , 1992, hep-th/9210067.
[19] Carlos Mochon. Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .
[20] J. Watrous,et al. Quantum Arthur-Merlin games , 2004 .
[21] Amit Sahai,et al. On the (im)possibility of obfuscating programs , 2001, JACM.
[22] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[23] Dorit Aharonov,et al. The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.
[24] Emil Artin,et al. Theorie der Zöpfe , 1925 .
[25] Robert König,et al. Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation , 2010 .
[26] Michael A. Nielsen,et al. The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..
[27] R. Ansorge. Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .
[28] Stephen P. Jordan,et al. Strong equivalence of reversible circuits is coNP-complete , 2013, Quantum Inf. Comput..
[29] David B. A. Epstein,et al. Word processing in groups , 1992 .
[30] Guy N. Rothblum,et al. On Best-Possible Obfuscation , 2007, TCC.
[31] Christian S. Collberg,et al. Watermarking, Tamper-Proofing, and Obfuscation-Tools for Software Protection , 2002, IEEE Trans. Software Eng..
[32] Elad Eban,et al. Interactive Proofs For Quantum Computations , 2017, 1704.04487.
[33] Elham Kashefi,et al. Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[34] Peter W. Shor,et al. Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..
[35] M. Bremner,et al. Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[36] Randal E. Bryant,et al. Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.
[38] Brent Waters,et al. How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..
[39] L. Kauffmann. Knots and physics , 1989 .
[40] Yahiko Kambayashi,et al. Transformation rules for designing CNOT-based quantum circuits , 2002, DAC '02.
[41] Patrick Dehornoy. Efficient solutions to the braid isotopy problem , 2008, Discret. Appl. Math..
[42] Matthias Troyer,et al. A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.