Geochronology of scapolite pegmatites from the Nordøyane ultra-high-pressure domain, Western Gneiss Region, Norway: Protracted crystal-melt reaction during Scandian exhumation

[1]  S. Reddy,et al.  Deformation-enhanced recrystallization of titanite drives decoupling between U-Pb and trace elements , 2021 .

[2]  H. Fossen,et al.  Segmentation of the Caledonian orogenic infrastructure and exhumation of the Western Gneiss Region during transtensional collapse , 2021, Journal of the Geological Society.

[3]  R. Jamieson,et al.  Scapolite pegmatite from the Nordøyane ultra-high pressure domain, Western Gneiss Region, Norway: Partial melting driven by infiltration of mantle-derived fluid , 2020 .

[4]  L. Heaman,et al.  Early crustal evolution of the Superior craton – A U–Pb, Hf and O isotope study of zircon from the Assean lake complex and a comparison to early crust in other cratons , 2020 .

[5]  J. Vervoort,et al.  Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite – Improvements, potential reference materials, and application to the Archean Saglek Block gneisses , 2020 .

[6]  A. Steenfelt,et al.  Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland , 2020 .

[7]  K. Walczak,et al.  U–Pb zircon age dating of diamond-bearing gneiss from Fjørtoft reveals repeated burial of the Baltoscandian margin during the Caledonian Orogeny , 2019, Geological Magazine.

[8]  C. Kirkland,et al.  Trace elements in titanite: A potential tool to constrain polygenetic growth processes and timing , 2019, Chemical Geology.

[9]  H. Massonne,et al.  An anticlockwise P–T–t path at high‐pressure, high‐temperature conditions for a migmatitic gneiss from the island of Fjørtoft, Western Gneiss Region, Norway, indicates two burial events during the Caledonian orogeny , 2019, Journal of Metamorphic Geology.

[10]  J. Cutts,et al.  Two‐Stage Cooling and Exhumation of Deeply Subducted Continents , 2019, Tectonics.

[11]  S. Reddy,et al.  Unravelling complex geologic histories using U–Pb and trace element systematics of titanite , 2019, Chemical Geology.

[12]  C. Fisher,et al.  Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador , 2018, Earth and Planetary Science Letters.

[13]  R. Jamieson,et al.  Timing of metamorphism and exhumation in the Nordøyane ultra-high-pressure domain, Western Gneiss Region, Norway: New constraints from complementary CA-ID-TIMS and LA-MC-ICP-MS geochronology , 2018, Lithos.

[14]  J. Cutts,et al.  Rates of Deep Continental Burial From Lu‐Hf Garnet Chronology and Zr‐in‐Rutile Thermometry on (Ultra)high‐Pressure Rocks , 2018 .

[15]  C. Fisher,et al.  Data Reduction of Laser Ablation Split‐Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Lu‐Hf + U‐Pb in Detrital Zircon and Sm‐Nd +U‐Pb in Igneous Monazite , 2017 .

[16]  G. Seward,et al.  Controls on Trace Element Uptake in Metamorphic Titanite: Implications for Petrochronology , 2017 .

[17]  P. Boivin,et al.  Sulfur isotope signatures in the lower crust: A SIMS study on S-rich scapolite of granulites , 2017 .

[18]  T. Gerya,et al.  H2O-fluid-saturated melting of subducted continental crust facilitates exhumation of ultrahigh-pressure rocks in continental subduction zones , 2015 .

[19]  T. Andersen,et al.  Monazite response to ultrahigh-pressure subduction from U-Pb dating by laser ablation split stream , 2015 .

[20]  Jared P. Butler,et al.  Paradigm lost: Buoyancy thwarted by the strength of the Western Gneiss Region (ultra)high-pressure terrane, Norway , 2015 .

[21]  J. Cottle,et al.  Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: Examples from the Western Gneiss Region, Norway , 2014 .

[22]  G. Prouteau,et al.  Structural, petrological and chemical analysis of syn‐kinematic migmatites: insights from the Western Gneiss Region, Norway , 2014 .

[23]  J. Crowley,et al.  Simultaneous in situ determination of U‐Pb and Sm‐Nd isotopes in monazite by laser ablation ICP‐MS , 2014 .

[24]  F. Corfu,et al.  The Scandinavian Caledonides: main features, conceptual advances and critical questions , 2014 .

[25]  F. Corfu,et al.  Metasomatism in the Ultrahigh-pressure Svartberget Garnet-peridotite (Western Gneiss Region, Norway): Implications for the Transport of Crust-derived Fluids within the Mantle , 2013 .

[26]  C. Teyssier,et al.  U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction , 2013 .

[27]  J. Cottle,et al.  Laser-ablation split-stream ICP petrochronology , 2013 .

[28]  D. Gee,et al.  Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision , 2013 .

[29]  G. Seward,et al.  Campaign-style titanite U–Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure , 2013 .

[30]  S. Reddy,et al.  Geochronology of Paleoproterozoic Augen Gneisses in the Western Gneiss Region, Norway: Evidence for Sveconorwegian Zircon Neocrystallization and Caledonian Zircon Deformation , 2013, The Journal of Geology.

[31]  R. Jamieson,et al.  Discovery of coesite–eclogite from the Nordøyane UHP domain, Western Gneiss Region, Norway: field relations, metamorphic history, and tectonic significance , 2013 .

[32]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[33]  G. Prouteau,et al.  Continental exhumation triggered by partial melting at ultrahigh pressure , 2011 .

[34]  T. Andersen,et al.  High-Temperature Deformation During Continental-Margin Subduction & Exhumation: The Ultrahigh-Pressure Western Gneiss Region of Norway , 2010 .

[35]  H. Roermund Recent progress in Scandian ultrahigh-pressure metamorphism in the northernmost domain of the Western Gneiss Complex, SW Norway: continental subduction down to 180–200 km depth , 2009, Journal of the Geological Society.

[36]  B. Beard,et al.  Slow subduction of a thick ultrahigh‐pressure terrane , 2009 .

[37]  J. Mattinson,et al.  Slow exhumation of UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway , 2008 .

[38]  B. Beard,et al.  Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway , 2007 .

[39]  D. A. Carswell,et al.  Scandian Ultrahigh-Pressure Metamorphism of Proterozoic Basement Rocks on Fjørtoft and Otrøy, Western Gneiss Region, Norway , 2006 .

[40]  S. Klemme,et al.  Rare earth element partitioning between titanite and silicate melts: Henry's law revisited , 2006 .

[41]  T. Pettke,et al.  Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth , 2005, Nature.

[42]  E. Eide,et al.  Discrete ultrahigh‐pressure domains in the Western Gneiss Region, Norway: implications for formation and exhumation , 2005 .

[43]  B. Hacker,et al.  Continental collisions and the creation of ultrahigh-pressure terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides , 2005 .

[44]  M. Whitehouse,et al.  Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway , 2004 .

[45]  T. Thorsnes,et al.  Thrusting and extension in the scandian hinterland, Norway: New U-Pb ages and tectonostratigraphic evidence , 2004 .

[46]  P. Robinson,et al.  Geometry of eclogite‐facies structural features: Implications for production and exhumation of ultrahigh‐pressure and high‐pressure rocks, Western Gneiss Region, Norway , 2004 .

[47]  P. Robinson,et al.  Evolution of amphibolite‐facies structural features and boundary conditions for deformation during exhumation of high‐ and ultrahigh‐pressure rocks, Nordøyane, Western Gneiss Region, Norway , 2003 .

[48]  S. Klemme,et al.  Effect of melt composition on the partitioning of trace elements between titanite and silicate melt , 2003 .

[49]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[50]  M. Jercinovic,et al.  Monazite geochronology of UHP and HP metamorphism, deformation, and exhumation, Nordøyane, Western Gneiss Region, Norway , 2000 .

[51]  P. Robinson,et al.  Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region, Norway , 2000 .

[52]  A. Wain,et al.  Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides , 2000 .

[53]  A. Wain New evidence for coesite in eclogite and gneisses: Defining an ultrahigh-pressure province in the Western Gneiss region of Norway , 1997 .

[54]  A. Milnes,et al.  Contraction, extension and timing in the South Norwegian Caledonides: the Sognefjord transect , 1997, Geological Society, London, Special Publications.

[55]  E. Eide,et al.  Microdiamond in high-grade metamorphic rocks of the Western Gneiss region, Norway , 1995 .

[56]  W. McDonough,et al.  The composition of the Earth , 1995 .

[57]  M. Mørk,et al.  SmNd isotopic systematics of a gabbro-eclogite transition , 1986 .

[58]  M. Mørk A gabbro to eclogite transition on Flemsøy, Sunnmøre, western Norway , 1985 .

[59]  G. Wasserburg,et al.  Sm-Nd and Rb-Sr Chronology of Continental Crust Formation , 1978, Science.

[60]  A. H. Jaffey,et al.  Precision Measurement of Half-Lives and Specific Activities of U-235 and U238 , 1971 .