Modulation Properties of Semiconductor Lasers
暂无分享,去创建一个
[1] L. Stulz,et al. Low-threshold InGaAsP ridge waveguide lasers at 1.3 µm , 1983 .
[2] G. Arnold,et al. Modulation behavior of semiconductor injection lasers , 1977 .
[3] Niloy K. Dutta,et al. Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.
[4] Ivan P. Kaminow,et al. High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers , 1984 .
[5] N. A. Olsson,et al. MICROWAVE INTENSITY AND FREQUENCY MODULATION OF HETEROEPITAXIAL-RIDGE-OVERGROWN DISTRIBUTED FEEDBACK LASERS. , 1985 .
[6] T. Paoli. Optical response of a stripe-geometry junction laser to sinusoidal current modulation at 1.2 GHz , 1981 .
[7] Gregory Raybon,et al. Semi-insulating blocked planar BH GaInAsP/InP laser with high power and high modulation bandwidth , 1988 .
[8] R. Linke. Direct gigabit modulation of injection lasers - Structure-dependent speed limitations , 1984, Journal of Lightwave Technology.
[9] Rodney S. Tucker,et al. Intermodulation and harmonic distortion in InGaAsP lasers , 1985 .
[10] John E. Bowers,et al. Propagation delays and transition times in pulse-modulated semiconductor lasers , 1986 .
[11] D. A. Kleinman,et al. The maser rate equations and spiking , 1964 .
[12] Niloy K. Dutta,et al. The case for Auger recombination in In1−xGaxAsyP1−y , 1982 .
[13] L. Figueroa,et al. High-frequency characteristics of GaAlAs injection lasers , 1982 .
[14] F. Koyama,et al. Analysis of dynamic spectral width of dynamic-single-mode (DSM) lasers and related transmission bandwidth of single-mode fibers , 1985, IEEE Journal of Quantum Electronics.
[15] K. Konnerth,et al. DELAY BETWEEN CURRENT PULSE AND LIGHT EMISSION OF A GALLIUM ARSENIDE INJECTION LASER , 1964 .
[16] Hiroyuki Sakaki,et al. Picosecond pulse generation (<1.8 ps) in a quantum well laser by a gain switching method , 1987 .
[17] Kam Y. Lau,et al. 11‐GHz direct modulation bandwidth GaAlAs window laser on semi‐insulating substrate operating at room temperature , 1984 .
[18] T. Koch,et al. Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .
[19] C. Henry. Theory of the linewidth of semiconductor lasers , 1982 .
[20] K. Hess,et al. Low‐threshold and wide‐bandwidth 1.3 μm InGaAsP buried crescent injection lasers with semi‐insulating current confinement layers , 1987 .
[21] K. Hess,et al. High‐speed and high‐power 1.3‐μm InGaAsP buried crescent injection lasers with semi‐insulating current blocking layers , 1987 .
[22] Uziel Koren,et al. Active mode-locking characteristics of InGaAsP-single mode fiber composite cavity lasers , 1986 .
[23] Yasuhiko Arakawa,et al. Quantum noise and dynamics in quantum well and quantum wire lasers , 1984 .
[24] R. B. Lauer,et al. InGaAsP buried heterostructure laser with 22 GHz bandwidth and high modulation efficiency , 1987 .
[25] John E. Bowers,et al. High-speed InGaAsP constricted-mesa lasers , 1986 .
[26] John E. Bowers,et al. High-frequency constricted mesa lasers , 1985 .
[27] W. Powazinik,et al. Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers , 1985 .
[28] Kam Y. Lau,et al. Direct amplitude modulation of short‐cavity GaAs lasers up to X‐band frequencies , 1983 .
[29] H. Haug. Quantum-Mechanical Rate Equations for Semiconductor Lasers , 1969 .
[30] High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers , 1985 .
[31] High-frequency small-signal modulation characteristics of short-cavity InGaAsP lasers , 1984 .
[32] G. Lasher,et al. Analysis of a proposed bistable injection laser , 1964 .
[33] U. Koren,et al. High-speed, polyimide-based semi-insulating planar buried heterostructures , 1987 .
[34] U. Koren,et al. Wide-bandwidth modulation of three-channel buried-crescent laser diodes , 1985 .
[35] Uziel Koren,et al. High‐speed analog and digital modulation of 1.51‐μm wavelength, three‐channel buried crescent InGaAsP lasers , 1984 .
[36] K. Vahala,et al. Detuned loading in coupled cavity semiconductor lasers—effect on quantum noise and dynamics , 1984 .
[37] Kam Y. Lau,et al. Ultimate frequency response of GaAs injection lasers , 1981 .
[38] T. L. Paoli,et al. Direct modulation of semiconductor lasers , 1970 .
[39] M. Maeda,et al. Buried-Heterostructure Laser Packaging for Wideband Optical Transmission Systems , 1978, IEEE Trans. Commun..
[40] R. B. Lauer,et al. 12.5‐GHz direct modulation bandwidth of vapor phase regrown 1.3‐μm InGaAsP buried heterostructure lasers , 1985 .
[41] Rodney S. Tucker,et al. Large-signal switching transients in index-guided semiconductor lasers , 1984 .
[42] John E. Bowers. Millimetre-wave response of InGaAsP lasers , 1985 .
[43] Govind P. Agrawal,et al. Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers , 1987 .
[44] Y. Suematsu,et al. Carrier lifetime measurement of a junction laser using direct modulation , 1968 .
[45] Yasuharu Suematsu,et al. Suppression of relaxation oscillation in light output of injection lasers by electrical resonance circuit , 1977 .
[46] Scott W. Corzine,et al. Actively mode‐locked GaInAsP laser with subpicosecond output , 1988 .
[47] A. Yariv,et al. Ultra-high speed semiconductor lasers , 1985 .
[48] A. R. Goodwin,et al. Direct modulation of double-heterostructure lasers at rates up to 1 Gbit/s , 1973 .
[49] D. J. Channin,et al. Effect of gain saturation on injection laser switching , 1979 .
[50] J. Bowers,et al. Picosecond dynamics of a gain-switched InGaAsP laser , 1987 .
[51] T. Bridges,et al. Low-threshold high-speed 1.55 μm vapour phase transported buried heterostructure lasers (VPTBH) , 1984 .
[52] D. Newman,et al. Physics of Semiconductor Laser Devices , 1980 .
[53] B. Schwartz,et al. Channeled substrate buried heterostructure InGaAsP/InP laser employing a buried Fe ion implant for current confinement , 1984 .
[54] A. Yariv,et al. Intermodulation distortion in a directly modulated semiconductor injection laser , 1984 .
[55] U. Koren,et al. Heterojunction phototransistors on n-channelled semi-insulating InP substrates , 1985 .
[56] L. D. Westbrook. Dispersion of linewidth-broadening factor in 1.5 μm laser diodes , 1985 .
[57] P. J. Corvini,et al. Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers , 1987 .
[58] J. Bowers,et al. Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .
[59] Frank Stern,et al. Calculated spectral dependence of gain in excited GaAs , 1976 .
[60] P. M. Boers,et al. Dynamic behaviour of semiconductor lasers , 1975 .
[61] H. Yanai,et al. The phase shift of the light output in sinusoidally modulated semiconductor lasers , 1979 .
[62] J. Nishizawa,et al. Amplitude modulation of diode laser light in millimeter-wave region , 1968 .
[63] Rodney S. Tucker,et al. High-speed modulation of semiconductor lasers , 1985 .
[64] John E. Bowers,et al. High speed semiconductor laser design and performance , 1987 .
[65] John E. Bowers,et al. High-speed large-signal digital modulation of a 1.3 μm InGaAsP constricted mesa laser at a simulated bit rate of 16 Gbit/s , 1985 .
[66] R. Olshansky,et al. Effect of nonlinear gain on the bandwidth of semiconductor lasers , 1985 .
[67] Yoshihisa Yamamoto,et al. Direct frequency modulation in AlGaAs semiconductor lasers , 1982 .
[68] Chin B. Su,et al. Effect of doping level on the gain constant and modulation bandwidth of InGaAsP semiconductor lasers , 1984 .
[69] Kohroh Kobayashi,et al. High-frequency response for DFB LD due to a wavelength detuning effect , 1987 .
[70] John E. Bowers,et al. 8 Gbit/s transmission over 30 km of optical fibre , 1986 .
[71] Rodney S. Tucker,et al. Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .
[72] John E. Bowers,et al. 16 Gbit/s direct modulation of an InGaAsP laser , 1987 .
[73] Yasuharu Suematsu,et al. Resonance-like characteristics of the direct modulation of a junction laser , 1967 .
[74] Steven K. Korotky,et al. Optical time-division multiplexing for very high-bit-rate systems , 1988 .
[75] Masahiro Asada,et al. Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers , 1985 .
[76] H. Burkhard,et al. Three- and four-layer LPE InGaAs(P) mushroom stripe lasers for λ = 1.30, 1.54, and 1.66 µm , 1985 .
[77] R. Lang,et al. Suppression of the relaxation oscillation in the modulated output of semiconductor lasers , 1976 .
[78] K Furuya,et al. Reduction of resonancelike peak in direct modulation due to carrier diffusion in injection laser. , 1978, Applied optics.
[79] M. Adams,et al. Detailed calculations of transient effects in semiconductor injection lasers , 1977 .
[80] J. Buus. Dynamic line broadening of semiconductor lasers modulated at high frequencies , 1985 .
[81] John E. Bowers,et al. 26.5 GHz bandwidth InGaAsP lasers with tight optical confinement , 1985 .
[82] Naoki Chinone,et al. Ultrahigh relaxation oscillation frequency (up to 30 GHz) of highly p-doped GaAs/GaAlAs multiple quantum well lasers , 1987 .
[83] B. S. Goldstein,et al. X-band modulation of GaAs lasers , 1965 .
[84] Santanu Chattopadhyay,et al. Novel quick-response, digital phase-locked loop , 1988 .
[85] D. J. Pope,et al. Microwave Circuit Models of Semiconductor Injection Lasers , 1982 .
[86] Amnon Yariv,et al. Direct modulation and active mode locking of ultrahigh speed GaAlAs lasers at frequencies up to 18 GHz , 1985 .
[87] H. Inaba,et al. Fourier‐transform‐limited, single‐mode picosecond optical pulse generation by a distributed feedback InGaAsP diode laser , 1984 .