Hypergeometric Functions in Exact Geometric Computation

Abstract Most problems in computational geometry are algebraic. A general approach to address nonrobustness in such problems is Exact Geometric Computation (EGC). There are now general libraries that support EGC for the general programmer (e.g., Core Library, LEDA Real). Many applications require non-algebraic functions as well. In this paper, we describe how to provide non-algebraic functions in the context of other EGC capabilities. We implemented a multiprecision hypergeometric series package which can be used to evaluate common elementary math functions to an arbitrary precision. This can be achieved relatively easily using the Core Library which supports a guaranteed precision level of accuracy. We address several issues of efficiency in such a hypergeometric package: automatic error analysis, argument reduction, preprocessing of hypergeometric parameters, and precomputed constants. Some preliminary experimental results are reported.

[1]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, ESA.

[2]  Mark H. Overmars Designing the Computational Geometry Algorithms Library CGAL , 1996, WACG.

[3]  Chee Yap,et al.  A new number core for robust numerical and geometric libraries (invited talk) , 1998 .

[4]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[5]  Chee-Keng Yap,et al.  A new constructive root bound for algebraic expressions , 2001, SODA '01.

[6]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[7]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[8]  Sylvain Pion,et al.  Interval arithmetic yields efficient dynamic filters for computational geometry , 1998, SCG '98.

[9]  Stefan Funke,et al.  Exact Geometric Computation Using Cascading * , 2022 .

[10]  Giuseppe Liotta,et al.  Robust Proximity Queries: An Illustration of Degree-Driven Algorithm Design , 1998, SIAM J. Comput..

[11]  Jean-Michel Muller,et al.  Elementary Functions: Algorithms and Implementation , 1997 .

[12]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[13]  Geert-Jan Giezeman,et al.  The CGAL Kernel: A Basis for Geometric Computation , 1996, WACG.

[14]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[15]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[16]  Stefan Schirra,et al.  Precision and Robustness in Geometric Computations , 1996, Algorithmic Foundations of Geographic Information Systems.

[17]  William L. Ditto,et al.  Principles and applications of chaotic systems , 1995, CACM.

[18]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[19]  Kurt Mehlhorn,et al.  A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals , 2000, Algorithmica.

[20]  Kurt Mehlhorn,et al.  Exact geometric computation made easy , 1999 .

[21]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[22]  Emmanuel Jeandel Évaluation rapide de fonctions hypergéométriques , 2000 .

[23]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..