First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope

A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions—charged- and neutral-current interactions of all flavors—are considered in a search for point-like sources with the ANTARES detector. In previous analyses, only muon neutrino charged-current interactions were used. This is achieved by using a novel reconstruction algorithm for shower-like events in addition to the standard muon track reconstruction. The shower channel contributes about 23% of all signal events for an E-2 energy spectrum. No significant excess over background is found. The most signal-like cluster of events is located at (α,δ)=(343.8°,23.5°) with a significance of 1.9σ. The neutrino flux sensitivity of the search is about E2dΦ/dE=6×10-9  GeV cm-2 s-1 for declinations from -90° up to -42°, and below 10-8  GeV cm-2 s-1 for declinations up to 5°. The directions of 106 source candidates and 13 muon track events from the IceCube high-energy sample events are investigated for a possible neutrino signal and upper limits on the signal flux are determined.

A. Heijboer | I. Palma | A. Trovato | G. Anton | U. Katz | H. Glotin | F. Fassi | Y. Tayalati | S. Basa | P. Gay | A. Capone | Y. Hello | A. Deschamps | J. Carr | P. Coyle | B. Vallage | M. Circella | A. Coleiro | D. Dornic | V. Kulikovskiy | B. Baret | S. Hallmann | S. Navas | G. Riccobene | D. Lefèvre | J. Brunner | V. Bertin | L. Caramete | J. Coelho | C. Racca | R. Lahmann | R. Moursli | S. Loucatos | A. Marinelli | S. Biagi | R. Bruijn | A. Albert | M. Anghinolfi | J. Aubert | M. Bouwhuis | R. Coniglione | C. Distefano | K. Graf | M. Jong | A. Kouchner | M. Marcelin | A. Margiotta | E. Nezri | P. Piattelli | V. Popa | T. Pradier | P. Sapienza | M. Spurio | T. Stolarczyk | M. Taiuti | J. Zornoza | G. Bonis | T. Chiarusi | E. Leonora | V. Elewyck | M. Kadler | H. Costantini | J. Busto | T. Eberl | I. Kreykenbohm | M. Ardid | J. Wilms | O. Kalekin | C. Donzaud | H. Haren | V. Giordano | D. Samtleben | A. Creusot | D. Drouhin | P. Migliozzi | D. Vivolo | T. Avgitas | R. Bormuth | S. Celli | I. Felis | L. Fusco | S. Galata | C. Hugon | G. Illuminati | C. James | M. Jongen | D. Kiessling | M. Kreter | C. Lachaud | K. Melis | T. Michael | A. Moussa | C. Pellegrino | C. Perrina | M. Saldaña | M. Sanguineti | C. Sieger | D. Turpin | F. Schussler | B. Belhorma | J. Hern'andez-Rey | J. Hossl | J. Z'uniga | A. D'iaz | A. Domi | I. Bojaddaini | A. Enzenhofer | J. Hofestadt | J. A. Mart'inez-Mora | G. E. Puavualacs | F. Versari | Mukharbek Organokov | D. Elsasser | L. Quinn | S. Bourret | H. Branzacs | N. Khayati | A. Ettahiri | R. G. Ruiz | M. Lotze | R. Mele | I. Salvadori | C. Tonnis | A. Vizzoca | M. Andr'e | J. Barrios-Mart'i | T. Gr'egoire | A. S'anchez-Losa | C. James

[1]  Thomas Hellman PHIL , 2018, Encantado.

[2]  A. Heijboer,et al.  An Algorithm for the Reconstruction of Neutrino-induced Showers in the ANTARES Neutrino Telescope , 2017, 1708.03649.

[3]  A. Heijboer,et al.  An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope , 2017, The European Physical Journal C.

[4]  J. A. Garc'ia-Gonz'alez,et al.  The 2HWC HAWC Observatory Gamma-Ray Catalog , 2017, 1702.02992.

[5]  J. C. D'iaz-V'elez,et al.  All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data , 2016, 1609.04981.

[6]  C. Kopper,et al.  Observation of Astrophysical Neutrinos in Four Years of IceCube Data , 2016 .

[7]  T. Michael Neutrino point source search including cascade events with the ANTARES neutrino telescope , 2016 .

[8]  G. Merino,et al.  OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA , 2016, The Astrophysical Journal.

[9]  S. Ter-Antonyan,et al.  LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY , 2016, 1605.00163.

[10]  A. Margiotta,et al.  The Run-by-Run Monte Carlo simulation for the ANTARES experiment , 2016 .

[11]  A. Quirrenbach,et al.  Acceleration of petaelectronvolt protons in the Galactic Centre , 2016, Nature.

[12]  D. Thompson,et al.  Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event , 2016, Nature Physics.

[13]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[14]  D. Thompson,et al.  ANTARES constrains a blazar origin of two IceCube PeV neutrino events , 2015, 1501.07843.

[15]  K. Murase On the origin of high-energy cosmic neutrinos , 2014, 1410.3680.

[16]  A. Heijboer,et al.  Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data , 2014, 1407.8525.

[17]  Y. Bai,et al.  Neutrino Lighthouse at Sagittarius A , 2014, 1407.2243.

[18]  D. Thompson,et al.  TANAMI Blazars in the IceCube PeV Neutrino Fields , 2014, 1406.0645.

[19]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[20]  A. Heijboer,et al.  SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE , 2014, 1402.6182.

[21]  A. Margiotta Common simulation tools for large volume neutrino detectors , 2013 .

[22]  Curtis N. James,et al.  Measurement of the atmospheric νμ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope , 2013, The European Physical Journal C.

[23]  F. Schüssler Energy reconstruction in neutrino telescopes , 2013 .

[24]  A. Heijboer,et al.  SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE , 2012, 1207.3105.

[25]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[26]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[27]  J. Aguilar,et al.  Performance of the front-end electronics of the ANTARES neutrino telescope , 2010 .

[28]  A. Heijboer,et al.  The Antares Collaboration , 2010 .

[29]  Anthony M. Brown,et al.  Positioning system of the ANTARES Neutrino Telescope , 2009, 0908.0814.

[30]  F. Aharonian,et al.  Energy spectra of gamma-rays, electrons and neutrinos produced at interactions of relativistic protons with low energy radiation , 2008, 0803.0688.

[31]  S. Wakely,et al.  TeVCat: An online catalog for Very High Energy Gamma-Ray Astronomy , 2008 .

[32]  M. Spurio,et al.  Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE) , 2008, Comput. Phys. Commun..

[33]  J. Becker High-energy neutrinos in the context of multimessenger astrophysics , 2007, 0710.1557.

[34]  M. Sioli,et al.  A parameterisation of single and multiple muons in the deep water or ice , 2005, hep-ph/0602003.

[35]  Heiko Geenen,et al.  IceCube Collaboration , 2005 .

[36]  for the H.E.S.S. Collaboration , 2003 .

[37]  Harrison Prosper,et al.  Workshop on Confidence Limits , 2001 .

[38]  Thomas K. Gaisser,et al.  High-energy neutrino astronomy: The Cosmic ray connection , 2000, astro-ph/0011525.

[39]  A. Read Modified frequentist analysis of search results (The CL(s) method) , 2000 .

[40]  Agrawal,et al.  Atmospheric neutrino flux above 1 GeV. , 1996, Physical review. D, Particles and fields.

[41]  Todor Stanev,et al.  Particle astrophysics with high energy neutrinos , 1995 .

[42]  T. Gaisser,et al.  Particle astrophysics with high energy neutrinos , 1994, hep-ph/9410384.

[43]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[44]  Phillip Capper The Proceedings , 2020, International Arbitration: A Handbook.