Line estimation using the Viterbi algorithm and track-before-detect approach for line following mobile robots

Line following robots requires image acquisition and processing algorithms for the determination of the line trajectory. The Viterbi algorithm is proposed for the estimation of the line trajectory in this paper. The robustness of this algorithm is verified using the Monte Carlo approach for two distortions types: additive Gaussian noise and false lines sets. The results show possibilities of reliable estimation, even if the real line is hidden in the noise, without the application of additional estimators based on the previous measurements.

[1]  Murat Efe,et al.  RADAR TARGET DETECTION USING HIDDEN MARKOV MODELS , 2012 .

[2]  Przemyslaw Mazurek,et al.  Code reordering using local random extraction and insertion (LREI) operator for GPGPU-based track-before-detect systems , 2012, Soft Computing.

[3]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[4]  P. Mazurek Optimization of Bayesian Track-Before-Detect algorithms for GPGPUs Implementations , 2010 .

[5]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[6]  A. Beg,et al.  Performance analysis of Viterbi decoder using a DSP technique , 2004, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[7]  Scott T. Acton,et al.  Biomedical Image Analysis: Tracking , 2006, Biomedical Image Analysis: Tracking.

[8]  Krzysztof Okarma,et al.  A Fast Image Analysis Technique for the Line Tracking Robots , 2010, ICAISC.

[9]  Przemyslaw Mazurek Preprocessing Using Maximal Autocovariance for Spatio-Temporal Track-Before-Detect Algorithm , 2013, IP&C.

[10]  I. Golightly,et al.  Visual control of an unmanned aerial vehicle for power line inspection , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[11]  Shinji Ozawa,et al.  Visual Navigation of an Autonomous Vehicle Using White Line Recognition , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Przemyslaw Mazurek,et al.  Comparison of Different Measurement Spaces for Spatio-Temporal Recurrent Track-Before-Detect Algorithm , 2011, IP&C.

[13]  Marc Parizeau,et al.  Evolving a Vision-Based Line-Following Robot Controller , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[14]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[15]  K. M. Hasan,et al.  Implementation of autonomous line follower robot , 2012, 2012 International Conference on Informatics, Electronics & Vision (ICIEV).

[16]  Jiann-Shiou Yang,et al.  A lane departure warning system based on the integration of the optical flow and hough transform methods , 2013, 2013 10th IEEE International Conference on Control and Automation (ICCA).

[17]  Saeid Nahavandi,et al.  OzTug mobile robot for manufacturing transportation , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[18]  Zezhi Chen,et al.  Automatic lane detection from vehicle motion trajectories , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[19]  Ilknur Colak,et al.  Evolving a Line Following Robot to use in shopping centers for entertainment , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[20]  Roy L. Streit,et al.  Track before Detect Algorithms , 2008, EURASIP J. Adv. Signal Process..

[21]  Przemysław Mazurek Track-Before-Detect Filter Banks for Noise Object Tracking , 2013 .

[22]  P. K. Chaturvedi,et al.  Communication Systems , 2002, IFIP — The International Federation for Information Processing.

[23]  M. H. Marhaban,et al.  Vision-based system for line following mobile robot , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.