A Genetic Link Between Paleoproterozoic Yuanjiacun BIF and the Great Oxidation Event in North China Craton

[1]  Lianchang Zhang,et al.  Depositional Environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China , 2015 .

[2]  E. Hiatt,et al.  The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada , 2015 .

[3]  A. Kappler,et al.  Primary hematite in Neoarchean to Paleoproterozoic oceans , 2015 .

[4]  B. Rasmussen,et al.  Hematite replacement of iron-bearing precursor sediments in the 3.46-b.y.-old Marble Bar Chert, Pilbara craton, Australia , 2014 .

[5]  Lianchang Zhang,et al.  Rare earth element and yttrium compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang area and their implications for the Great Oxidation Event (GOE) , 2014, Science China Earth Sciences.

[6]  D. Canfield,et al.  Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record , 2014 .

[7]  Jian-rong Shi,et al.  Geochronological and geochemical constraints on the Lüliang Group in the Lüliang Complex: Implications for the tectonic evolution of the Trans-North China Orogen , 2014 .

[8]  Christopher T. Reinhard,et al.  Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event , 2014 .

[9]  Yi-Liang Li,et al.  Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions , 2014 .

[10]  B. Rasmussen,et al.  Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence for postdepositional oxidation of iron-bearing minerals , 2014 .

[11]  F. Liu,et al.  Geochemistry and Si–O–Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China , 2014 .

[12]  Steven M Bates,et al.  Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir , 2014 .

[13]  A. Bekker,et al.  Correlation of Paleoproterozoic glaciations based on U–Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups , 2013 .

[14]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[15]  M. Santosh,et al.  Metallogeny of the North China Craton: Link with secular changes in the evolving Earth , 2013 .

[16]  Guochun Zhao,et al.  Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications , 2013 .

[17]  K. Konhauser,et al.  Petrology and geochemistry of the ̃2.9Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland: Source characteristics and depositional environment , 2013 .

[18]  A. Bekker,et al.  Biological carbon precursor to diagenetic siderite with spherical structures in iron formations , 2013, Nature Communications.

[19]  B. Rasmussen,et al.  Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations , 2013 .

[20]  Lianchang Zhang,et al.  Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating , 2012 .

[21]  Guo Qing-jun,et al.  Carbon Isotopic Evolution of the Late Ediacaran Gaojiashan Biota on the Northern Yangtze Platform, South China , 2012 .

[22]  Pengtao Yang,et al.  Geochemistry and U–Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton , 2012 .

[23]  A. Bekker,et al.  Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event , 2012, Proceedings of the National Academy of Sciences.

[24]  H. Dorland Paleoproterozoic laterites, red beds and ironstones of the Pretoria group with reference to the history of atmospheric oxygen , 2012 .

[25]  A. Bekker,et al.  Iron isotope composition of some Archean and Proterozoic iron formations , 2012 .

[26]  A. Bekker,et al.  Oxygen overshoot and recovery during the early Paleoproterozoic , 2012 .

[27]  A. Bekker,et al.  Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event , 2011, Nature.

[28]  T. Phelps,et al.  Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations , 2011 .

[29]  Lianchang Zhang,et al.  Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting , 2011 .

[30]  Guochun Zhao,et al.  U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton , 2011 .

[31]  E. Roden,et al.  IRON IN MICROBIAL METABOLISMS , 2011 .

[32]  S. Bowring,et al.  Birthdate for the Coronation paleocean: age of initial rifting in Wopmay orogen, CanadaThis article is one of a series of papers published in this Special Issue on the theme of Geochronology in honour of Tom Krogh. , 2011 .

[33]  A. Bekker,et al.  Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition , 2010 .

[34]  E. Roden,et al.  Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments , 2010 .

[35]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[36]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[37]  A. Bekker,et al.  Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans , 2009 .

[38]  Wenqian Hu,et al.  Co-translational mRNA decay in Saccharomyces cerevisiae , 2009, Nature.

[39]  A. Kappler,et al.  Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry , 2009 .

[40]  R. Aster,et al.  Evidence and implications for a widespread magmatic shutdown for 250 My on Earth , 2009 .

[41]  N. Arndt,et al.  Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event , 2009, Nature.

[42]  A. Trendall The Significance of Iron‐Formation in the Precambrian Stratigraphic Record , 2009 .

[43]  A. Knoll,et al.  Isotopic Constraints on the Late Archean Carbon Cycle from the Transvaal Supergroup along the Western Margin of the Kaapvaal Craton, South Africa , 2009 .

[44]  A. Kappler,et al.  Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans , 2008 .

[45]  R. Frei,et al.  Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA): Assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmospheric oxygen , 2008 .

[46]  H. Strauss,et al.  Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa , 2008 .

[47]  Dunyi Liu,et al.  New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton , 2008, American Journal of Science.

[48]  San-zhong Li,et al.  SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen , 2008 .

[49]  V. Dekov,et al.  Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea) , 2007 .

[50]  F. Blanckenburg,et al.  Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation , 2007 .

[51]  A. Anbar,et al.  Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition , 2007 .

[52]  E. Roden,et al.  The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens , 2007 .

[53]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[54]  A. Bekker,et al.  Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA , 2007 .

[55]  L. Heaman,et al.  Circa 2.3‐Ga Magmatism of the Arrowsmith Orogeny, Uranium City Region, Western Churchill Craton, Canada , 2007, The Journal of Geology.

[56]  F. Rios,et al.  Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil , 2007 .

[57]  P. Silver,et al.  Intermittent Plate Tectonics? , 2006, Science.

[58]  A. J. Kaufman,et al.  Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America , 2006 .

[59]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  M. Bau,et al.  Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event” , 2006 .

[61]  D. Newman,et al.  Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria , 2005 .

[62]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[63]  W. Seyfried,et al.  Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers [rapid communication] , 2005 .

[64]  A. Kappler,et al.  The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations , 2005 .

[65]  E. Roden,et al.  Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction , 2005 .

[66]  R. Berman,et al.  TECTONOMETAMORPHISM AT ca. 2.35 AND 1.85 Ga IN THE RAE DOMAIN, WESTERN CHURCHILL PROVINCE, NUNAVUT, CANADA: INSIGHTS FROM STRUCTURAL, METAMORPHIC AND IN SITU GEOCHRONOLOGICAL ANALYSIS OF THE SOUTHWESTERN COMMITTEE BAY BELT , 2005 .

[67]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[68]  A. Bekker,et al.  Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State , 2004, Science.

[69]  A. Bekker,et al.  Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen , 2004 .

[70]  M. Barley,et al.  Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia , 2004 .

[71]  M. Whitehouse,et al.  Characterisation of early Archaean chemical sediments by trace element signatures , 2004 .

[72]  G. Logan,et al.  Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere , 2004 .

[73]  A. Anbar,et al.  Iron isotope fractionation during microbial reduction of iron: The importance of adsorption , 2004 .

[74]  A. Koziol Experimental determination of siderite stability and application to Martian Meteorite ALH84001 , 2004 .

[75]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[76]  M. Barley,et al.  Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia , 2003 .

[77]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[78]  T. McCollom Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3) , 2003 .

[79]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[80]  B. Kamber,et al.  The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history , 2001 .

[81]  A. J. Kaufman,et al.  Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for Coupled Climate Change and Carbon Cycling , 2001 .

[82]  Atsuyuki Ohta,et al.  REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 , 2001 .

[83]  K. Nealson,et al.  Iron isotope biosignatures. , 1999, Science.

[84]  D. Abbott,et al.  Plume‐related mafic volcanism and the deposition of banded iron formation , 1999 .

[85]  P. Dulski,et al.  Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater , 1999 .

[86]  Y. Kato,et al.  Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics , 1998 .

[87]  J. Gutzmer,et al.  Effects of mass transfer, compaction and secondary porosity on hydrothermal upgrading of Paleoproterozoic sedimentary manganese ore in the Kalahari manganese field, South Africa , 1997 .

[88]  Y. Nozaki,et al.  The fractionation between Y and Ho in the marine environment , 1997 .

[89]  H. Tsikos,et al.  Petrography and geochemistry of the Paleoproterozoic Hotazel Iron-Formation, Kalahari manganese field, South Africa; implications for Precambrian manganese metallogenesis , 1997 .

[90]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[91]  A. J. Kaufman Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: an example from the Transvaal Basin, South Africa , 1996 .

[92]  P. Dulski,et al.  Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa , 1996 .

[93]  D. Demaiffe,et al.  Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway , 1996 .

[94]  A. Isley Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation , 1995, The Journal of Geology.

[95]  S. Taylor,et al.  Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America , 1995 .

[96]  N. Revsbech,et al.  Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies , 1994, Applied and environmental microbiology.

[97]  M. Bau Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations , 1993 .

[98]  E. Sholkovitz,et al.  The Geochemistry of Rare Earth Elements in the Seasonally Anoxic Water Column and Porewaters of Chesapeake Bay , 1992 .

[99]  R. Siever The silica cycle in the Precambrian , 1992 .

[100]  C. German,et al.  Redox cycling of rare earth elements in the suboxic zone of the Black Sea , 1991 .

[101]  P. Buseck,et al.  Hematite Nanospheres of Possible Colloidal Origin from a Precambrian Banded Iron Formation , 1990, Science.

[102]  B. Windley,et al.  The Archaean and early Proterozoic banded iron formations of North China: their characteristics, geotectonic relations, chemistry and implications for crustal growth , 1990 .

[103]  C. German,et al.  Application of the Ce anomaly as a paleoredox indicator: The ground rules , 1990 .

[104]  A. J. Kaufman,et al.  Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. , 1990, Economic geology and the bulletin of the Society of Economic Geologists.

[105]  N. Beukes,et al.  Geochemistry and sedimentology of a facies transition — from microbanded to granular iron-formation — in the early Proterozoic Transvaal Supergroup, South Africa , 1990 .

[106]  Ke Xu,et al.  Depositional environment and metamorphism of early Proterozoic iron formation in the Lüliangshan region, Shanxi Province, China , 1988 .

[107]  R. Garrels A model for the deposition of the microbanded Precambrian iron formations , 1987 .

[108]  B. Roser,et al.  Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio , 1986, The Journal of Geology.

[109]  K. Crook,et al.  Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins , 1986 .

[110]  U. Schwertmann,et al.  Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite , 1983 .

[111]  G. Gross A CLASSIFICATION OF IRON FORMATIONS BASED ON DEPOSITIONAL ENVIRONMENTS , 1980 .

[112]  G. Bronner,et al.  Precambrian banded iron-formations of the Ijil Group (Kediat Ijil, Reguibat Shield, Mauritania) , 1979 .

[113]  H. Harder Synthesis of Iron Layer Silicate Minerals under Natural Conditions , 1978 .

[114]  O. Bricker,et al.  Some aspects of the sedimentary and diagenetic environment of Proterozoic banded iron-formation , 1977 .

[115]  Hermann Harder,et al.  Nontronite synthesis at low temperatures , 1976 .

[116]  M. Schidlowski,et al.  Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia , 1976 .

[117]  K. Laajoki Rare-earth elements in Precambrian iron formations in Väyrylänkylä, South Puolanka area, Finland , 1975 .

[118]  D. Ayres Genesis of Iron-bearing Minerals in Banded Iron Formation Mesobands in The Dales Gorge Member, Hamersley Group, Western Australia , 1972 .

[119]  B. French Stability relations of siderite (FeCO 3 ) in the system Fe-C-O , 1971 .

[120]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[121]  H. Schweigart Genesis of the iron ores of the Pretoria series, South Africa , 1965 .

[122]  H. L. James Sedimentary facies of iron-formation , 1954 .

[123]  S. Boggs Principles of Sedimentology and Stratigraphy , 2016 .

[124]  Lianchang Zhang,et al.  Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China , 2015 .

[125]  A. Bekker,et al.  Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry , 2014 .

[126]  A. Kappler,et al.  Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations , 2013 .

[127]  J. Gutzmer,et al.  The Composition and Depositional Environments of Mesoarchean Iron Formations of the West Rand Group of the Witwatersrand Supergroup, South Africa , 2013 .

[128]  Zhou Hongying,et al.  Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating , 2012 .

[129]  Z. Lian Study of the Precambrian BIF-iron deposits in the North China Craton:Progresses and questions , 2012 .

[130]  Dai-Rong Yan Genetic type,formation age and tectonic setting of the Waitoushan banded iron formation, Benxi,Liaoning Province , 2012 .

[131]  Zhao Zi-ran Characteristics of Rare Earth Elements and Trace Elements in Hanwang Neo-Archaean Banded Iron Formations,Shandong Province , 2009 .

[132]  E. Roden,et al.  Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis , 2008 .

[133]  J. Gutzmer,et al.  Origin and Paleoenvironmental Significance of Major Iron Formations at the Archean-Paleoproterozoic Boundary , 2008 .

[134]  A. Knoll,et al.  An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation , 2006 .

[135]  E. P. Oliveira,et al.  Guia de excursão - geologia do segmento norte do Orógeno Itabuna-Salvador- Curaçá , 2003 .

[136]  G. Yuansheng The Palaeoproterozoic Rift-Type Volcanism in Luliangshan Area, Shanxi Province, and Its Geological Significance , 2003 .

[137]  H. Ohmoto NONREDOX TRANSFORMATIONS OF MAGNETITE-HEMATITE IN HYDROTHERMAL SYSTEMS , 2003 .

[138]  M. Bau Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect , 1999 .

[139]  H. Jost,et al.  PETROGÊNESE DE FORMAÇÕES FERRÍFERAS E METAHIDROTERMALITOS DA FORMAÇÃO AIMBÉ, GRUPO GUARINOS (ARQUEANO), GOIÁS , 1995 .

[140]  G. Gross Algoma-type iron-formation , 1995 .

[141]  A. Miller,et al.  Iron - formation, evaporite, and possible metallogenetic implications for the Lower Proterozoic Hurwitz Group, District of Keewatin, Northwest Territories , 1993 .

[142]  D. Lovley,et al.  Dissimilatory metal reduction. , 1993, Annual review of microbiology.

[143]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[144]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[145]  W. Ewers Chapter 13 Chemical Factors in the Deposition and Diagenesis of Banded Iron-Formation , 1983 .

[146]  G. Faure Principles of isotope geology , 1977 .