Approximate Volume and Integration for Basic Semialgebraic Sets
暂无分享,去创建一个
[1] Komei Fukuda,et al. Exact volume computation for polytopes: a practical study , 1996 .
[2] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[3] J. Krivine,et al. Anneaux préordonnés , 1964 .
[4] Robert L. Smith,et al. Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..
[5] T. Stieltjes. Recherches sur les fractions continues , 1995 .
[6] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[7] K. Schmüdgen. TheK-moment problem for compact semi-algebraic sets , 1991 .
[8] Phillip H. Schmidt,et al. Computing volumes of polyhedra , 1986 .
[9] Martin E. Dyer,et al. On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..
[10] Jean B. Lasserre,et al. A Laplace transform algorithm for the volume of a convex polytope , 2001, JACM.
[11] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[12] Jean B. Lasserre. Sufficient conditions for a real polynomial to be a sum of squares , 2006 .
[13] J. Lasserre,et al. SDP vs. LP Relaxations for the Moment Approach in Some Performance Evaluation Problems , 2004 .
[14] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[15] D. Handelman. Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .
[16] Robert L. Smith,et al. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..
[17] Claude J. P. Bélisle,et al. Slow hit-and-run sampling ☆ , 2000 .
[18] Claus Scheiderer,et al. Positivity and sums of squares: A guide to recent results , 2009 .
[19] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[20] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[21] H. Landau. Moments in mathematics , 1987 .
[22] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[23] Jean B. Lasserre,et al. An analytical expression and an algorithm for the volume of a convex polyhedron inRn , 1983 .
[24] Jacques Cohen,et al. Two Algorithms for Determining Volumes of Convex Polyhedra , 1979, JACM.
[25] Jean B. Lasserre,et al. A semidefinite programming approach to the generalized problem of moments , 2007, Math. Program..
[26] Markus Schweighofer,et al. Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..
[27] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[28] Martin E. Dyer,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.
[29] K. Schmüdgen. TheK-moment problem for compact semi-algebraic sets , 1991 .
[30] A. Markoff,et al. Démonstration de certaines inégalités de M. Tchébychef , 1884 .
[31] Lloyd N. Trefethen,et al. An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..
[32] J. Lawrence. Polytope volume computation , 1991 .
[33] Mihai Putinar. Extremal Solutions of the Two-DimensionalL-Problem of Moments, II , 1995 .
[34] Jean B. Lasserre,et al. Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..
[35] Béla Bollobás,et al. Volume Estimates and Rapid Mixing , 1997 .