Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.

[1]  J. Chu,et al.  Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. , 2010, Bioresource technology.

[2]  M. Itagaki,et al.  Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol , 2009, Applied and Environmental Microbiology.

[3]  P. Hallenbeck,et al.  High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. , 2009, Bioresource technology.

[4]  D. Wei,et al.  High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production , 2009, Journal of Industrial Microbiology & Biotechnology.

[5]  Chelladurai Rathnasingh,et al.  Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli , 2009, Applied Microbiology and Biotechnology.

[6]  A. Mas,et al.  Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions , 2009, Journal of applied microbiology.

[7]  Ashok Kumar,et al.  Microbial production of dihydroxyacetone. , 2008, Biotechnology advances.

[8]  D. Wei,et al.  Membrane-Bound Pyrroloquinoline Quinone-Dependent Dehydrogenase in Gluconobacter oxydans M5, Responsible for Production of 6-(2-Hydroxyethyl) Amino-6-Deoxy-l-Sorbose , 2008, Applied and Environmental Microbiology.

[9]  U. Stahl,et al.  Improving fermentation and biomass formation of Gluconobacter oxydans , 2007 .

[10]  C. Gätgens,et al.  Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343 , 2007, Applied Microbiology and Biotechnology.

[11]  Sarat Babu Imandi,et al.  Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design , 2007 .

[12]  D. Wei,et al.  Production of Gluconobacter oxydans Cells from Low‐cost Culture Medium for Conversion of Glycerol to Dihydroxyacetone , 2007, Preparative biochemistry & biotechnology.

[13]  D. Wei,et al.  Repeated Use of Immobilized Gluconobacter oxydans Cells for Conversion of Glycerol to Dihydroxyacetone , 2007, Preparative biochemistry & biotechnology.

[14]  Shan-Jing Yao,et al.  Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae , 2006 .

[15]  H. Görisch,et al.  Knockout and Overexpression of Pyrroloquinoline Quinone Biosynthetic Genes in Gluconobacter oxydans 621H , 2006, Journal of bacteriology.

[16]  H. Sahm,et al.  Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. , 2006, Biotechnology journal.

[17]  D. Hekmat,et al.  Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process , 2005, Bioprocess and biosystems engineering.

[18]  W. F. Fricke,et al.  Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans , 2005, Nature Biotechnology.

[19]  D. Hekmat,et al.  Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans , 2003, Bioprocess and biosystems engineering.

[20]  T. Hoshino,et al.  Purification and Properties of Membrane-bound D-Sorbitol Dehydrogenase from Gluconobacter suboxydans IFO 3255 , 2002, Bioscience, biotechnology, and biochemistry.

[21]  Taro Miyazaki,et al.  Main Polyol Dehydrogenase of Gluconobacter suboxydans IFO 3255, Membrane-bound D-Sorbitol Dehydrogenase, That Needs Product of Upstream Gene, sldB, for Activity , 2002, Bioscience, biotechnology, and biochemistry.

[22]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[23]  W. Deckwer,et al.  Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans , 1999 .

[24]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[25]  C. Romieu,et al.  Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol , 1994, Applied Microbiology and Biotechnology.

[26]  André Bories,et al.  Kinetic study and optimisation of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans , 1991 .

[27]  B. Mattiasson,et al.  Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone , 1985, Applied Microbiology and Biotechnology.

[28]  Bo Mattiasson,et al.  Characterization of Gluconobacter oxydans immobilized in calcium alginate , 1985, Applied Microbiology and Biotechnology.

[29]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[30]  B. Mattiasson,et al.  Oxygen supply to immobilized cells , 1982, European journal of applied microbiology and biotechnology.

[31]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[33]  H. Boyer,et al.  A complementation analysis of the restriction and modification of DNA in Escherichia coli. , 1969, Journal of molecular biology.

[34]  R. Hernandez,et al.  The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. , 2009, Bioresource technology.

[35]  D. Poncelet,et al.  Enhancement of oxygen transfer rate using microencapsulated silicone oils as oxygen carriers , 1997 .

[36]  K. Matsushita,et al.  Respiratory chains and bioenergetics of acetic acid bacteria. , 1994, Advances in microbial physiology.