Atom world based on nano-forces: 25 years of atomic force microscopy.

Scanning tunneling microscopy (STM) has opened up the new nanoworlds of scanning probe microscopy. STM is the first-generation atomic tool that can image, evaluate and manipulate individual atoms and consequently can create nanostructures by true bottom-up methods based on atom-by-atom manipulation. Atomic force microscopy is a second-generation atomic tool that has followed the footsteps of STM, and which is now opening doors to a new atom world based on using nanoscale forces.

[1]  Simultaneous current-, force-, and work-function measurement with atomic resolution , 2005, cond-mat/0501469.

[2]  S. Morita,et al.  Vertical and lateral force mapping on the Si ( 111 ) − ( 7 × 7 ) surface by dynamic force microscopy , 2008 .

[3]  O. Custance,et al.  Non-contact atomic force microscopy study of the Sn/Si(1 1 1) mosaic phase , 2005 .

[4]  Jonathan D Wrigley,et al.  Surface diffusion by an atomic exchange mechanism , 1980 .

[5]  Katsuyuki Suzuki,et al.  High resolution imaging of contact potential difference using a novel ultrahigh vacuum non-contact atomic force microscope technique , 1999 .

[6]  R. Wiesendanger,et al.  Magnetic exchange force microscopy with atomic resolution , 2007, Nature.

[7]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[8]  Gerd Binnig,et al.  Atomic Resolution with Atomic Force Microscope , 1987 .

[9]  Ho,et al.  Single-bond formation and characterization with a scanning tunneling microscope , 1999, Science.

[10]  H. Güntherodt,et al.  Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. , 1990, Physical review letters.

[11]  Ho,et al.  Single-molecule vibrational spectroscopy and microscopy , 1998, Science.

[12]  P. Jelínek,et al.  Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: The case of the α − Sn ∕ Si ( 111 ) − ( 3 × 3 ) R 30 ° surface , 2006 .

[13]  H. Hölscher,et al.  Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy , 2002 .

[14]  N. Nilius,et al.  Development of One-Dimensional Band Structure in Artificial Gold Chains , 2002, Science.

[15]  F. Giessibl Subatomic Features on the Silicon (111)-(7×7) , 2008 .

[16]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Masayuki Abe,et al.  Room-temperature reproducible spatial force spectroscopy using atom-tracking technique , 2005 .

[18]  K. Morgenstern,et al.  Imaging Phonon Excitation with Atomic Resolution , 2008, Science.

[19]  M. Crommie,et al.  Disappearance of the Kondo resonance for atomically fabricated cobalt dimers , 1999 .

[20]  M. Ohta,et al.  Atomically Resolved InP(110) Surface Observed with Noncontact Ultrahigh Vacuum Atomic Force Microscope , 1995 .

[21]  K. Fukui,et al.  Atom-Resolved Image of the TiO 2 \(110\) Surface by Noncontact Atomic Force Microscopy , 1997 .

[22]  M. Ohta,et al.  Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy , 1995, Science.

[23]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[24]  S. Morita,et al.  Mapping and imaging for rapid atom discrimination: A study of frequency modulation atomic force microscopy , 2009 .

[25]  U. Dürig,et al.  Extracting interaction forces and complementary observables in dynamic probe microscopy , 2000 .

[26]  John E. Sader,et al.  Accurate formulas for interaction force and energy in frequency modulation force spectroscopy , 2004 .

[27]  N. Amer,et al.  Optical‐beam‐deflection atomic force microscopy: The NaCl (001) surface , 1990 .

[28]  Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986 .

[29]  Masayuki Abe,et al.  Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy , 2007 .

[30]  W. Ho,et al.  Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope. , 2001, Physical review letters.

[31]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[32]  Cyrus F. Hirjibehedin,et al.  Large Magnetic Anisotropy of a Single Atomic Spin Embedded in a Surface Molecular Network , 2007, Science.

[33]  S. Morita,et al.  Simultaneous AFM and STM measurements on the Si ( 111 ) − ( 7 × 7 ) surface , 2010 .

[34]  K. Rieder,et al.  Direct evidence for the effect of quantum confinement of surface-state electrons on atomic diffusion. , 2008, Physical review letters.

[35]  T. Tsong,et al.  Atomic replacement and vacancy formation and annihilation on iridium surfaces , 1992, Nature.

[36]  Peter Liljeroth,et al.  Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing , 2009, Science.

[37]  U. Schwarz,et al.  Noncontact atomic force microscopy , 2012, Beilstein journal of nanotechnology.

[38]  Jascha Repp,et al.  Controlling the Charge State of Individual Gold Adatoms , 2004, Science.

[39]  Fredrik E. Olsson,et al.  Imaging Bond Formation Between a Gold Atom and Pentacene on an Insulating Surface , 2006, Science.

[40]  K. Takayanagi,et al.  Structural analysis of Si(111)‐7×7 by UHV‐transmission electron diffraction and microscopy , 1985 .

[41]  B N J Persson,et al.  Lateral Hopping of Molecules Induced by Excitation of Internal Vibration Mode , 2002, Science.

[42]  Stroscio,et al.  Electronic structure of the Si(111)2 x 1 surface by scanning-tunneling microscopy. , 1986, Physical review letters.

[43]  J. Mannhart,et al.  Force Microscopy with Light-Atom Probes , 2004, Science.

[44]  C. Joachim,et al.  Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. , 2005, Physical review letters.

[45]  N. Lorente,et al.  Selectivity in vibrationally mediated single-molecule chemistry , 2003, Nature.

[46]  M. Flatté,et al.  Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions , 2006, Nature.

[47]  C. Joachim,et al.  Vertical Manipulation of Individual Atoms by a Direct STM Tip-Surface Contact on Ge(111) , 1998 .

[48]  A. Shluger,et al.  Microscopy: Atomic fingerprinting , 2007, Nature.

[49]  Meyer,et al.  Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering , 2000, Physical review letters.

[50]  P. Avouris,et al.  Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM , 1991, Science.

[51]  J. Crain,et al.  Electronically Induced Atom Motion in Engineered CoCun Nanostructures , 2006, Science.

[52]  Kei Kobayashi,et al.  True atomic resolution in liquid by frequency-modulation atomic force microscopy , 2005 .

[53]  Franz J. Giessibl,et al.  The Force Needed to Move an Atom on a Surface , 2008, Science.

[54]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[55]  Seizo Morita,et al.  Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. , 2003, Physical review letters.

[56]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[57]  The man who understood the Feynman machine. , 2007, Nature nanotechnology.

[58]  Ho,et al.  Inducing and viewing the rotational motion of a single molecule , 1998, Science.

[59]  S. Roth,et al.  Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. , 2008, Nature nanotechnology.

[60]  Gerd Meyer,et al.  BASIC STEPS OF LATERAL MANIPULATION OF SINGLE ATOMS AND DIATOMIC CLUSTERS WITH A SCANNING TUNNELING MICROSCOPE TIP , 1997 .

[61]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[62]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[63]  N. Wingreen,et al.  Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance , 1998, Science.

[64]  Stefan Heinze,et al.  Imaging and manipulating the spin direction of individual atoms. , 2010, Nature nanotechnology.

[65]  B. Delley,et al.  Kondo Scattering Observed at a Single Magnetic Impurity , 1998 .

[66]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[67]  D. Eigler,et al.  Single-Atom Spin-Flip Spectroscopy , 2004, Science.

[68]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[69]  Y. Sugawara,et al.  Stable operation mode for dynamic noncontact atomic force microscopy , 1998 .

[70]  Masayuki Abe,et al.  Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy , 2008, Science.

[71]  B. Lundqvist,et al.  Single-Molecule Dissociation by Tunneling Electrons , 1997 .

[72]  D. Eigler,et al.  An atomic switch realized with the scanning tunnelling microscope , 1991, Nature.

[73]  Hasegawa,et al.  Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. , 1993, Physical review letters.

[74]  O. Custance,et al.  Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy , 2005 .

[75]  Ewan Marshall,et al.  Advances in Atomic Force Microscopy in the 21 st Century , 2011 .

[76]  S. Kitamura,et al.  Observation of 7×7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy , 1995 .

[77]  D. Eigler,et al.  Quantum mirages formed by coherent projection of electronic structure , 2000, Nature.

[78]  R. Feynman There's plenty of room at the bottom , 1999 .

[79]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[80]  H. Güntherodt,et al.  Quantitative Measurement of Short-Range Chemical Bonding Forces , 2001, Science.

[81]  S. Morita,et al.  Simultaneous measurement of force and tunneling current at room temperature , 2009 .

[82]  Masayuki Abe,et al.  Atom inlays performed at room temperature using atomic force microscopy , 2005, Nature materials.

[83]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[84]  P. Jelínek,et al.  Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. , 2007, Physical review letters.

[85]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[86]  Cyrus F. Hirjibehedin,et al.  Spin Coupling in Engineered Atomic Structures , 2006, Science.

[87]  Peter Liljeroth,et al.  Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy , 2009, Science.

[88]  P. Jelínek,et al.  Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. , 2008, Physical review letters.

[89]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[90]  G. Nazin,et al.  Visualization and Spectroscopy of a Metal-Molecule-Metal Bridge , 2003, Science.

[91]  K. Rieder,et al.  Controlled lateral manipulation of single molecules with the scanning tunneling microscope , 1995 .

[92]  Shin-ichi Kitamura,et al.  High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope , 1998 .

[93]  J. Kirschner,et al.  Spin-Dependent Quantum Interference Within a Single Magnetic Nanostructure , 2010, Science.

[94]  D. Eigler,et al.  Molecule Cascades , 2002, Science.

[95]  R. Feynman There’s plenty of room at the bottom , 2011 .

[96]  Daniel Rugar,et al.  Gold deposition from a scanning tunneling microscope tip , 1991 .

[97]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[98]  Sumio Hosaka,et al.  Surface modification of MoS2 using an STM , 1992 .

[99]  C. Quate,et al.  Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. , 2005, Physical Review Letters.

[100]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[101]  C. Toumey 35 atoms that changed the nanoworld. , 2010, Nature nanotechnology.