Conjugates of characteristic Sturmian words generated by morphisms

This article is concerned with characteristic Sturmian words of slope α and 1 - α (denoted by c α and c 1-α resp.), where α ∈ (0,1) is an irrational number such that α=[0; 1 + d 1 , d 2 ,...,d n ] with d n ≥ d 1 ≥ 1. It is known that both c α and c 1-α are fixed points of non-trivial (standard) morphisms σ and σ α and c 1-α are generated by the respective morphisms σ and σ α (and hence c 1-α ) into generalized adjoining singular words, by considering conjugates of powers of the standard morphism σ by which it is generated. This extends a recent result of Leve and Seebold on conjugates of the infinite Fibonacci word.

[1]  J. Howie COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .

[2]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[3]  Guy Melançon Lyndon Words and Singular Factors of Sturmian Words , 1999, Theor. Comput. Sci..

[4]  Tom C. Brown,et al.  Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.

[5]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[6]  Patrice Séébold,et al.  Conjugation of standard morphisms and a generalization of singular words , 2003 .

[7]  Aldo de Luca,et al.  Standard Sturmian Morphisms , 1997, Theor. Comput. Sci..

[8]  Jean Berstel,et al.  A Characterization of Sturmian Morphisms , 1993, MFCS.

[9]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[10]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[11]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[12]  A. S. Fraenkel,et al.  Determination of [nθ] by its Sequence of*Differences , 1978, Canadian Mathematical Bulletin.

[13]  Patrice Séébold On the Conjugation of Standard Morphisms , 1996, MFCS.

[14]  Guy Melanc,et al.  Lyndon Words and Singular Factors of Sturmian Words , 2022 .

[15]  Zhi-Xiong Wen,et al.  Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..

[16]  Zhi-Ying Wen,et al.  Some properties of the factors of Sturmian sequences , 2003, Theor. Comput. Sci..

[18]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[19]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[20]  Alfred J. van der Poorten,et al.  Substitution invariant Beatty sequences , 1996 .