Variable Exponent, Linear Growth Functionals in Image Restoration

We study a functional with variable exponent, $1\leq p(x)\leq 2$, which provides a model for image denoising, enhancement, and restoration. The diffusion resulting from the proposed model is a combination of total variation (TV)-based regularization and Gaussian smoothing. The existence, uniqueness, and long-time behavior of the proposed model are established. Experimental results illustrate the effectiveness of the model in image restoration.

[1]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[2]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[3]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[4]  Robert Hardt,et al.  An evolution problem for linear growth functionals , 1994 .

[5]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[6]  R. Temam,et al.  Pseudosolutions of the time-dependent minimal surface problem , 1978 .

[7]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[8]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[9]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[10]  Ross T. Whitaker,et al.  A multi-scale approach to nonuniform diffusion , 1993 .

[11]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[12]  Guy Bouchitté,et al.  Integral representation of convex functionals on a space of measures , 1988 .

[13]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[14]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[15]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[16]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[17]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[18]  Xiaodong Zhou An evolution problem for plastic antiplanar shear , 1992 .

[19]  Mila Nikolova,et al.  Weakly Constrained Minimization: Application to the Estimation of Images and Signals Involving Constant Regions , 2004, Journal of Mathematical Imaging and Vision.

[20]  Yunmei Chen,et al.  Minimization Problems and Associated Flows Related to Weighted p Energy and Total Variation , 2003, SIAM J. Math. Anal..

[21]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[22]  Giuseppe Buttazzo,et al.  Integral representation and relaxation of local functionals , 1985 .

[23]  Chak-Kuen Wong,et al.  Total variation image restoration: numerical methods and extensions , 1997, Proceedings of International Conference on Image Processing.

[24]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[25]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[26]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[27]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[28]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[29]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[30]  V. Caselles,et al.  THE MINIMIZING TOTAL VARIATION FLOW WITH MEASURE INITIAL CONDITIONS , 2004 .

[31]  Tony F. Chan,et al.  Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diiusion in Image Processing , 1996 .

[32]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[33]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[34]  L. Evans Measure theory and fine properties of functions , 1992 .

[35]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[36]  C. Ballester,et al.  The Dirichlet Problem for the Total Variation Flow , 2001 .

[37]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[38]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..