Inductive situation calculus

Temporal reasoning has always been a major test case for knowledge representation formalisms. In this paper, we develop an inductive variant of the situation calculus using the Logic for Non-Monotone Inductive Definitions (NMID). This logic has been proposed recently and is an extension of classical logic. It allows for a uniform represention of various forms of definitions, including monotone inductive definitions and non-monotone forms of inductive definitions such as iterated induction and induction over well-founded posets. In the NMID-axiomatisation of the situation calculus, fluents and causality predicates are defined by simultaneous induction on the well-founded poset of situations. The inductive approach allows us to solve the ramification problem for the situation calculus in a uniform and modular way. Our solution is among the most general solutions for the ramification problem in the situation calculus. Using previously developed modularity techniques, we show that the basic variant of the inductive situation calculus without ramification rules is equivalent to Reiter-style situation calculus.

[1]  Michael Thielscher,et al.  Ramification and Causality , 1997, Artif. Intell..

[2]  Drew McDermott,et al.  Nonmonotonic Logic and Temporal Projection , 1987, Artif. Intell..

[3]  Donald Michie,et al.  Machine Intelligence 4 , 1970 .

[4]  Eugenia Ternovska,et al.  Reducing Inductive Definitions to Propositional Satisfiability , 2005, ICLP.

[5]  Melvin Fitting,et al.  Fixpoint Semantics for Logic Programming a Survey , 2001, Theor. Comput. Sci..

[6]  David G. Mitchell,et al.  A Framework for Representing and Solving NP Search Problems , 2005, AAAI.

[7]  Allen Van Gelder,et al.  The Alternating Fixpoint of Logic Programs with Negation , 1993, J. Comput. Syst. Sci..

[8]  Eugenia Ternovskaia,et al.  Inductive Definability and the Situation Calculus , 1996 .

[9]  M. Shanahan Solving the frame problem , 1997 .

[10]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[11]  Sheila A. McIIraith Integrating actions and state constraints: a closed-form solution to the ramification problem (sometimes) , 2000 .

[12]  Raymond Reiter,et al.  The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression , 1991, Artificial and Mathematical Theory of Computation.

[13]  Eugenia Ternovska,et al.  A Logic for Non-Monotone Inductive Definitions , 2005, ArXiv.

[14]  Yiannis N. Moschovakis,et al.  Elementary induction on abstract structures , 1974 .

[15]  Johann Eder,et al.  Logic and Databases , 1992, Advanced Topics in Artificial Intelligence.

[16]  François Fages,et al.  Consistency of Clark's completion and existence of stable models , 1992, Methods Log. Comput. Sci..

[17]  Raymond Reiter,et al.  Some contributions to the metatheory of the situation calculus , 1999, JACM.

[18]  Peter Aczel,et al.  An Introduction to Inductive Definitions , 1977 .

[19]  Maurice Bruynooghe,et al.  Satisfiability Checking for PC(ID) , 2005, LPAR.

[20]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[21]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[22]  Raymond Reiter,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2001 .

[23]  Eugenia Ternovska,et al.  A logic of nonmonotone inductive definitions , 2008, TOCL.

[24]  Marc Denecker,et al.  Extending Classical Logic with Inductive Definitions , 2000, Computational Logic.

[25]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[26]  Saharon Shelah,et al.  Fixed-point extensions of first-order logic , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[27]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[28]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[29]  Vladimir Lifschitz,et al.  Artificial intelligence and mathematical theory of computation: papers in honor of John McCarthy , 1991 .

[30]  Victor W. Marek,et al.  The Logic Programming Paradigm: A 25-Year Perspective , 2011 .

[31]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[32]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[33]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[34]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[35]  Daniele Theseider Dupré,et al.  An Inductive Definition Approach to Ramifications , 1998, Electron. Trans. Artif. Intell..

[36]  Michael Thielscher,et al.  Introduction to the Fluent Calculus , 1998, Electron. Trans. Artif. Intell..

[37]  Fangzhen Lin,et al.  Embracing Causality in Specifying the Indirect Effects of Actions , 1995, IJCAI.

[38]  Hudson Turner,et al.  Causal Theories of Action and Change , 1997, AAAI/IAAI.

[39]  Joost Vennekens,et al.  Splitting an operator: Algebraic modularity results for logics with fixpoint semantics , 2006, TOCL.

[40]  Y. Moschovakis Elementary induction on abstract structures (Studies in logic and the foundations of mathematics) , 1974 .

[41]  J. McCarthy Circumscription|a Form of Nonmonotonic Reasoning , 1979 .

[42]  Victor W. Marek,et al.  Logic programming revisited , 2001, ACM Trans. Comput. Log..

[43]  J. McCarthy ELABORATION TOLERANCE , 1997 .

[44]  Enrico Giunchiglia,et al.  Nonmonotonic causal theories , 2004, Artif. Intell..

[45]  Hector J. Levesque,et al.  Foundations for the Situation Calculus , 1998, Electron. Trans. Artif. Intell..

[46]  Eugenia Ternovskaia,et al.  Causality via Inductive Deenitions , 2007 .

[47]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[48]  Marc Denecker,et al.  The Well-Founded Semantics Is the Principle of Inductive Definition , 1998, JELIA.

[49]  Eugenia Ternovska,et al.  A Logic of Non-monotone Inductive Definitions and Its Modularity Properties , 2004, LPNMR.