PROPERTIES OF GOLD NANOANTENNAS IN THE INFRARED

ith infrared spectroscopic microscopy using synchrotron light, resonant light scattering from single gold nanowires was investigated. The nanowires with diameters in the range of 100 nm were prepared by electrochemical deposition in polycarbonate etched ion-track membranes and transferred onto infrared-transparent substrates. For a few microns long nanowires, antenna-like plasmon resonances were observed in agreement with light scattering calculations. The resonances are dependent on wire length, wire shape, and on the dielectric surroundings of the nanowire. Electromagnetic far-field enhancement at resonance points to the ability of the nanowire to confine light on the nanoscale. This effect can be exploited for surface enhanced infrared absorption.

[1]  Suguru Sangu,et al.  Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting. , 2006, Optics express.

[2]  M. Toimil-Molares,et al.  Synthesis of gold nanowires with controlled crystallographic characteristics , 2006 .

[3]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[4]  Publisher’s Note: “Optical antennas: Resonators for local field enhancement” [J. Appl. Phys. 94, 4632 (2003)] , 2003 .

[5]  A. Pucci,et al.  Infrared spectroscopy of Pb layer growth on Si(111) , 2006 .

[6]  C. Domingo,et al.  Surface-Enhanced Infrared Spectroscopy , 2004, Applied spectroscopy.

[7]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[8]  A. Pucci,et al.  Growth of silver on MgO(001) and infrared optical properties , 2007 .

[9]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[10]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[11]  M. Toimil-Molares,et al.  Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: the influence of deposition parameters , 2006 .

[12]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[13]  S. M. Black,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Online Pattern Recognition in Noisy Background by Means of Wavelet Coefficients Thresholding , 2005 .

[14]  Annemarie Pucci,et al.  Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films , 2006 .

[15]  J. Aizpurua,et al.  Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. , 2006, Physical review letters.

[16]  P. Royer,et al.  Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory , 2006 .

[17]  Ekmel Ozbay,et al.  Negative refraction and superlens behavior in a two-dimensional photonic crystal , 2005 .

[18]  K. Hübner,et al.  IR‐Spectroscopic Data of Thin Insulating Films on Semiconductors. New Methods of Interpretation and Analysis , 1990 .

[19]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[20]  R. Dingle,et al.  The electrical conductivity of thin wires , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[22]  G. Wiederrecht,et al.  Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. , 2005, Physical review letters.

[23]  D. W. Berreman,et al.  Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films , 1963 .

[24]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[25]  Magnus Willander,et al.  Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids , 2002 .

[26]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[27]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[28]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[29]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[30]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[31]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[32]  F. Abelès Optical Properties of Solids , 1972 .

[33]  Anatolii Viacheslavovich Sokolov,et al.  Optical Properties of Metals , 1967 .

[34]  A. Pucci,et al.  Infrared optical properties of ultrathin Fe films on MgO(001) beyond the percolation threshold , 2000 .

[35]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[36]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[37]  A. Goncharenko,et al.  Effects of dimension on optical transmittance of semicontinuous gold films , 2001 .

[38]  A. Pucci,et al.  Adsorbate-induced changes in the broadband infrared transmission of ultrathin metal films , 2002 .

[39]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[40]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[41]  Alexander Wokaun,et al.  Surface-Enhanced Electromagnetic Processes , 1984 .