A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems

Based on the variant of the deteriorated positive-definite and skew-Hermitian splitting (VDPSS) preconditioner developed by Zhang and Gu (BIT Numer. Math. 56:587–604, 2016), a generalized VDPSS (GVDPSS) preconditioner is established in this paper by replacing the parameter α in (2,2)-block of the VDPSS preconditioner by another parameter β. This preconditioner can also be viewed as a generalized form of the VDPSS preconditioner and the new relaxed HSS (NRHSS) preconditioner which has been exhibited by Salkuyeh and Masoudi (Numer. Algorithms, 2016). The convergence properties of the GVDPSS iteration method are derived. Meanwhile, the distribution of eigenvalues and the forms of the eigenvectors of the preconditioned matrix are analyzed in detail. We also study the upper bounds on the degree of the minimum polynomial of the preconditioned matrix. Numerical experiments are implemented to illustrate the effectiveness of the GVDPSS preconditioner and verify that the GVDPSS preconditioned generalized minimal residual method is superior to the DPSS, relaxed DPSS, SIMPLE-like, NRHSS, and VDPSS preconditioned ones for solving saddle point problems in terms of the iterations and computational times.

[1]  Jae Heon Yun Variants of the Uzawa method for saddle point problem , 2013, Comput. Math. Appl..

[2]  Zhong-Zhi Bai Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks , 2013, J. Comput. Appl. Math..

[3]  Andrew J. Wathen,et al.  Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices , 2005, SIAM J. Sci. Comput..

[4]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[5]  Changfeng Ma,et al.  A generalized shift-splitting preconditioner for singular saddle point problems , 2015, Appl. Math. Comput..

[6]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[7]  Davod Khojasteh Salkuyeh,et al.  A new relaxed HSS preconditioner for saddle point problems , 2016, Numerical Algorithms.

[8]  Valeria Simoncini,et al.  Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..

[9]  Eric de Sturler,et al.  Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..

[10]  Michael K. Ng,et al.  New preconditioners for saddle point problems , 2006, Appl. Math. Comput..

[11]  Michael K. Ng,et al.  Constraint Preconditioners for Symmetric Indefinite Matrices , 2009, SIAM J. Matrix Anal. Appl..

[12]  Sen Li,et al.  A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems , 2015, Appl. Math. Lett..

[13]  Yang Cao,et al.  Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..

[14]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[15]  Zhong-Zhi Bai,et al.  Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..

[16]  Changfeng Ma,et al.  A generalized shift-splitting preconditioner for saddle point problems , 2015, Appl. Math. Lett..

[17]  Chuanqing Gu,et al.  A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems , 2014, Appl. Math. Comput..

[18]  Hong-Tao Fan,et al.  A generalized relaxed positive-definite and skew-Hermitian splitting preconditioner for non-Hermitian saddle point problems , 2015, Appl. Math. Comput..

[19]  Peng Guo,et al.  A modified SOR-like method for the augmented systems , 2015, J. Comput. Appl. Math..

[20]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[21]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[24]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[25]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[26]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[27]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[28]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[29]  Yang Cao,et al.  A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation , 2015, J. Comput. Appl. Math..

[30]  E. Sturler,et al.  Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .

[31]  H. Elman Preconditioners for saddle point problems arising in computational fluid dynamics , 2002 .

[32]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[33]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[34]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[35]  Zhong-Zhi Bai,et al.  Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..

[36]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[37]  Zhong-zhi,et al.  A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .

[38]  Cornelis Vuik,et al.  Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow , 2004, Numer. Linear Algebra Appl..

[39]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[40]  Zhao-Zheng Liang,et al.  PU-STS method for non-Hermitian saddle-point problems , 2015, Appl. Math. Lett..

[41]  Yu-Jiang Wu,et al.  The modified shift-splitting preconditioners for nonsymmetric saddle-point problems , 2016, Appl. Math. Lett..

[42]  Chuanqing Gu,et al.  A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems , 2016 .

[43]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[44]  Y. Cao,et al.  A simplified HSS preconditioner for generalized saddle point problems , 2016 .

[45]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[46]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[47]  Zhao-Zheng Liang,et al.  SIMPLE-like preconditioners for saddle point problems from the steady Navier-Stokes equations , 2016, J. Comput. Appl. Math..