A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems
暂无分享,去创建一个
[1] Jae Heon Yun. Variants of the Uzawa method for saddle point problem , 2013, Comput. Math. Appl..
[2] Zhong-Zhi Bai. Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks , 2013, J. Comput. Appl. Math..
[3] Andrew J. Wathen,et al. Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices , 2005, SIAM J. Sci. Comput..
[4] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[5] Changfeng Ma,et al. A generalized shift-splitting preconditioner for singular saddle point problems , 2015, Appl. Math. Comput..
[6] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[7] Davod Khojasteh Salkuyeh,et al. A new relaxed HSS preconditioner for saddle point problems , 2016, Numerical Algorithms.
[8] Valeria Simoncini,et al. Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..
[9] Eric de Sturler,et al. Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..
[10] Michael K. Ng,et al. New preconditioners for saddle point problems , 2006, Appl. Math. Comput..
[11] Michael K. Ng,et al. Constraint Preconditioners for Symmetric Indefinite Matrices , 2009, SIAM J. Matrix Anal. Appl..
[12] Sen Li,et al. A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems , 2015, Appl. Math. Lett..
[13] Yang Cao,et al. Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..
[14] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[15] Zhong-Zhi Bai,et al. Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..
[16] Changfeng Ma,et al. A generalized shift-splitting preconditioner for saddle point problems , 2015, Appl. Math. Lett..
[17] Chuanqing Gu,et al. A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems , 2014, Appl. Math. Comput..
[18] Hong-Tao Fan,et al. A generalized relaxed positive-definite and skew-Hermitian splitting preconditioner for non-Hermitian saddle point problems , 2015, Appl. Math. Comput..
[19] Peng Guo,et al. A modified SOR-like method for the augmented systems , 2015, J. Comput. Appl. Math..
[20] Z. Bai,et al. Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .
[21] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[22] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[23] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[24] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[25] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[26] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[27] Zeng-Qi Wang,et al. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .
[28] Zhong-Zhi Bai,et al. Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..
[29] Yang Cao,et al. A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation , 2015, J. Comput. Appl. Math..
[30] E. Sturler,et al. Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .
[31] H. Elman. Preconditioners for saddle point problems arising in computational fluid dynamics , 2002 .
[32] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[33] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[34] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[35] Zhong-Zhi Bai,et al. Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..
[36] M. Ng,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[37] Zhong-zhi,et al. A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .
[38] Cornelis Vuik,et al. Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow , 2004, Numer. Linear Algebra Appl..
[39] Zhong-Zhi Bai,et al. Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..
[40] Zhao-Zheng Liang,et al. PU-STS method for non-Hermitian saddle-point problems , 2015, Appl. Math. Lett..
[41] Yu-Jiang Wu,et al. The modified shift-splitting preconditioners for nonsymmetric saddle-point problems , 2016, Appl. Math. Lett..
[42] Chuanqing Gu,et al. A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems , 2016 .
[43] Valeria Simoncini,et al. Block triangular preconditioners for symmetric saddle-point problems , 2004 .
[44] Y. Cao,et al. A simplified HSS preconditioner for generalized saddle point problems , 2016 .
[45] Gene H. Golub,et al. SOR-like Methods for Augmented Systems , 2001 .
[46] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[47] Zhao-Zheng Liang,et al. SIMPLE-like preconditioners for saddle point problems from the steady Navier-Stokes equations , 2016, J. Comput. Appl. Math..