Evolution of a Pt (1 1 1) surface at high oxygen coverage in acid medium

[1]  D. T. Napp,et al.  A ring-disk electrode study of the current/potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids , 1970 .

[2]  Ronald Woods,et al.  A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 m sulphuric acid by cyclic voltammetry , 1972 .

[3]  P. Stonehart,et al.  Potential cycling effects on platinum electrocatalyst surfaces , 1973 .

[4]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[5]  L. Radom,et al.  Definitive theoretical evidence for the nonplanarity of the hydronium ion (H3O , 1981 .

[6]  V. Grassian,et al.  Photochemical reactions of cis‐ and trans‐1,2‐dichloroethene adsorbed on Pd(111) and Pt(111) , 1988 .

[7]  V. Grassian,et al.  The structures of cis‐ and trans‐dichloroethenes adsorbed on Pt(111) , 1988 .

[8]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[9]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[10]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[11]  M. Blesa Chemical dissolution of metal oxides , 1994 .

[12]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[15]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[16]  A. Kokalj,et al.  Periodic DFT Study of the Pt(111): A p(1×1) Atomic Oxygen Interaction with the Surface , 1999 .

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  Perla B. Balbuena,et al.  Roles of proton and electric field in the electroreduction of O2 on Pt(111) surfaces: Results of an ab-initio molecular dynamics study , 2004 .

[19]  Mathias Schulze,et al.  Alteration of the distribution of the platinum catalyst in membrane-electrode assemblies during PEFC operation , 2004 .

[20]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[21]  P. Balbuena,et al.  Ab initio molecular dynamics simulations of the oxygen reduction reaction on a Pt(111) surface in the presence of hydrated hydronium (H3O)(+)(H2O)2: direct or series pathway? , 2005, The journal of physical chemistry. B.

[22]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[23]  A. V. van Duin,et al.  Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. , 2006, The journal of physical chemistry. B.

[24]  P. Balbuena,et al.  Dissolution of oxygen reduction electrocatalysts in an acidic environment: density functional theory study. , 2006, The journal of physical chemistry. A.

[25]  Tomoki Akita,et al.  Characteristics of a Platinum Black Catalyst Layer with Regard to Platinum Dissolution Phenomena in a Membrane Electrode Assembly , 2006 .

[26]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[27]  David L. Wood,et al.  PEM fuel cell electrocatalyst durability measurements , 2006 .

[28]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[29]  Tomoki Akita,et al.  Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. , 2006, Physical chemistry chemical physics : PCCP.

[30]  P. Balbuena,et al.  Absorption of Atomic Oxygen into Subsurfaces of Pt(100) and Pt(111): Density Functional Theory Study , 2007 .

[31]  Perla B. Balbuena,et al.  Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces , 2007 .

[32]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[33]  Ken-ichiro Ota,et al.  Dissolution of platinum in acidic media , 2008 .

[34]  P. Balbuena,et al.  Atomic Oxygen Absorption into Pt-Based Alloy Subsurfaces , 2008 .

[35]  P. Balbuena,et al.  Oxygen adsorption and surface segregation in (211) surfaces of Pt(shell)/M(core) and Pt3M (M = Co, Ir) alloys , 2008 .

[36]  A. Gross,et al.  Influence of water on elementary reaction steps in electrocatalysis. , 2008, Faraday discussions.

[37]  Lim Kim,et al.  Dissolution and migration of platinum after long-term operation of a polymer electrolyte fuel cell under various conditions , 2008 .

[38]  J. Weaver,et al.  STM study of high-coverage structures of atomic oxygen on Pt(1 1 1): p(2 × 1) and Pt oxide chain structures , 2008 .

[39]  A. Asthagiri,et al.  Density functional theory study of the initial oxidation of the Pt(111) surface , 2009 .

[40]  M. Umeda,et al.  Pt Degradation Mechanism in Concentrated Sulfuric Acid Studied Using Rotating Ring−Disk Electrode and Electrochemical Quartz Crystal Microbalance , 2009 .

[41]  D. Marx,et al.  Aggregation-Induced Dissociation of HCl(H2O)4 Below 1 K: The Smallest Droplet of Acid , 2009, Science.

[42]  Steven G. Rinaldo,et al.  Physical Theory of Platinum Nanoparticle Dissolution in Polymer Electrolyte Fuel Cells , 2010 .

[43]  Monte Carlo model of CO adsorption on supported Pt nanoparticle , 2010 .