Specific salt effects on thermophoresis of charged colloids.

We study the Soret effect of charged polystyrene particles as a function of temperature and electrolyte composition. As a main result we find that the Soret coefficient is determined by charge effects, and that non-ionic contributions are small. In view of the well-known electric-double layer interactions, our thermal field-flow fractionation data lead us to the conclusion that the Soret effect originates to a large extent from diffusiophoresis in the salt gradient and from the electrolyte Seebeck effect, both of which show strong specific-ion effects. Moreover, we find that thermophoresis of polystyrene beads is fundamentally different from proteins and aqueous polymer solutions, which show a strong non-ionic contribution.

[1]  S. Wereley,et al.  soft matter , 2019, Science.

[2]  Arghya Majee,et al.  Thermocharge of a hot spot in an electrolyte solution , 2013, 1401.7493.

[3]  A. Würger Is Soret equilibrium a non-equilibrium effect? , 2013 .

[4]  Frank Cichos,et al.  Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging , 2013 .

[5]  Makusu Tsutsui,et al.  Thermophoretic manipulation of DNA translocation through nanopores. , 2013, ACS nano.

[6]  W. Köhler,et al.  Thermophoresis of thermoresponsive polystyrene–poly(N-isopropylacrylamide) core–shell particles , 2013 .

[7]  M. Maskos,et al.  Ion Effects in Field‐Flow Fractionation of Aqueous Colloidal Polystyrene , 2012 .

[8]  M. Maskos,et al.  Hofmeister effect in thermal field-flow fractionation of colloidal aqueous dispersions , 2012 .

[9]  P. Cicuta,et al.  Giant thermophoresis of poly(N-isopropylacrylamide) microgel particles , 2012 .

[10]  F. Armstrong,et al.  Current opinion in chemical biology. , 2012, Current opinion in chemical biology.

[11]  A. Würger,et al.  Charging of heated colloidal particles using the electrolyte Seebeck effect. , 2012, Physical review letters.

[12]  Clemens Bechinger,et al.  Active Brownian motion tunable by light , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  A. Libchaber,et al.  Thermal separation: interplay between the Soret effect and entropic force gradient. , 2011, Physical review letters.

[14]  A. Würger,et al.  Collective thermoelectrophoresis of charged colloids. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Alois Würger,et al.  Thermal non-equilibrium transport in colloids , 2010 .

[16]  Hong-Ren Jiang,et al.  Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. , 2010, Physical review letters.

[17]  R. Piazza,et al.  Thermophoresis and thermoelectricity in surfactant solutions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[18]  Hong-Ren Jiang,et al.  Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. , 2009, Physical review letters.

[19]  S. Chao,et al.  Three dimensional simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect , 2008, Heat and Mass Transfer.

[20]  A. Würger Transport in charged colloids driven by thermoelectricity. , 2008, Physical review letters.

[21]  Hui Ning,et al.  Soret effect of nonionic surfactants in water studied by different transient grating setups. , 2008, The journal of physical chemistry. B.

[22]  Roberto Piazza,et al.  Thermophoresis: moving particles with thermal gradients , 2008 .

[23]  Roberto Piazza,et al.  Does thermophoretic mobility depend on particle size? , 2008, Physical review letters.

[24]  T. Bickel,et al.  Thermophoresis of charged colloidal particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Gerard C L Wong,et al.  Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  P. Cremer,et al.  Interactions between macromolecules and ions: The Hofmeister series. , 2006, Current opinion in chemical biology.

[27]  Dieter Braun,et al.  Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. , 2006, Physical review letters.

[28]  R. Rusconi,et al.  The “macromolecular tourist": Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions , 2006, The European physical journal. E, Soft matter.

[29]  J. K. Platten,et al.  The Soret Effect: A Review of Recent Experimental Results , 2006 .

[30]  T. Bickel,et al.  Thermodiffusion of charged micelles. , 2005, Physical review letters.

[31]  D. Cahill,et al.  Transport of nanoscale latex spheres in a temperature gradient. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[32]  Roberto Piazza,et al.  Thermophoresis in protein solutions , 2003 .

[33]  Roberto Piazza,et al.  Soret effect in interacting micellar solutions. , 2002, Physical review letters.

[34]  Simone Wiegand,et al.  Thermal nonequilibrium phenomena in fluid mixtures , 2002 .

[35]  K. Morozov Thermal diffusion in disperse systems , 1999 .

[36]  M. Antonietti,et al.  Examination of the atypical electrophoretic mobility behavior of charged colloids in the low salt region using the O’Brian-White theory , 1997 .

[37]  M. Hoyos,et al.  Velocity profiles in thermal field-flow fractionation , 1994 .

[38]  C. Mou,et al.  Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory , 1989 .

[39]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[40]  M. Lederer Journal of Chromatography , 1988 .

[41]  J. Giddings,et al.  Influence of Temperature Gradients on Velocity Profiles and Separation Parameters in Thermal Field-Flow Fractionation , 1984 .

[42]  F. Bellucci,et al.  Nonisothermal matter transport in sodium chloride and potassium chloride aqueous solutions. 1. Homogeneous system (thermal diffusion) , 1982 .

[43]  E. Ruckenstein Can phoretic motions be treated as interfacial tension gradient driven phenomena , 1981 .

[44]  I. Krieger,et al.  Emulsifier‐free emulsion polymerization with cationic comonomer , 1976 .

[45]  D. Caldwell Measurement of negative thermal diffusion coefficients by observing the onset of thermohaline convection , 1973 .