Denoising deterministic time series

This paper is concerned with the problem of recovering a finite, deterministic time series from observations that are corrupted by additive, independent noise. A distinctive feature of this problem is that the available data exhibit long-range dependence and, as a consequence, existing statistical theory and methods are not readily applicable. This paper gives an analysis of the denoising problem that extends recent work of Lalley, but begins from first principles. Both positive and negative results are established. The positive results show that denoising is possible under somewhat restrictive conditions on the additive noise. The negative results show that, under more general conditions on the noise, no procedure can recover the underlying deterministic series.

[1]  Steven P. Lalley,et al.  Removing the Noise from Chaos Plus Noise , 2001 .

[2]  Andrew B. Nobel,et al.  Consistent Estimation of a Dynamical Map , 2001 .

[3]  Andrew B. Nobel,et al.  Finitary reconstruction of a measure preserving transformation , 2001 .

[4]  Steven P. Lalley,et al.  Beneath the noise, chaos , 1999 .

[5]  A. Nobel Limits to classification and regression estimation from ergodic processes , 1999 .

[6]  Terrence M. Adams,et al.  On density estimation from ergodic processes , 1998 .

[7]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[8]  Richard J. Smith,et al.  Estimating local Lyapunov exponents , 1997 .

[9]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[10]  D. Guégan,et al.  Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system , 1995 .

[11]  L. Mark Berliner,et al.  Asymptotic inference for dynamical systems observed with error , 1995 .

[12]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[13]  Mike E. Davies,et al.  Noise reduction schemes for chaotic time series , 1994 .

[14]  C. D. Cutler,et al.  A REVIEW OF THE THEORY AND ESTIMATION OF FRACTAL DIMENSION , 1993 .

[15]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Jens Ledet Jensen,et al.  Chaotic dynamical systems with a View towards statistics: a review , 1993 .

[17]  V Isham,et al.  Statistical aspects of chaos: a review , 1993 .

[18]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[19]  T. Sauer A noise reduction method for signals from nonlinear systems , 1992 .

[20]  L. M. Berliner,et al.  Statistics, Probability and Chaos , 1992 .

[21]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[22]  A. Gallant,et al.  Finding Chaos in Noisy Systems , 1992 .

[23]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[24]  Robert L. Devaney Pallarés An introduction to chaotic dynamical systems , 1990, Acta Applicandae Mathematicae.

[25]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[26]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[27]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[28]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[29]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[30]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[31]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[32]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[33]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[34]  D. Aeyels GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS , 1981 .

[35]  F. Takens Detecting strange attractors in turbulence , 1981 .

[36]  P. Walters Introduction to Ergodic Theory , 1977 .

[37]  Rufus Bowen,et al.  On axiom A diffeomorphisms , 1975 .

[38]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .