State transfer control of quantum systems on the Bloch sphere
暂无分享,去创建一个
Shuang Cong | Yuesheng Lou | S. Cong | Y. Lou
[1] G. Kimura. The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.
[2] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[3] C. Altafini,et al. Quantum Markovian master equation driven by coherent controls: a controllability analysis , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[4] K. Wódkiewicz,et al. Stochastic decoherence of qubits. , 2001, Optics express.
[5] Andrzej Kossakowski,et al. The Bloch-Vector Space for N-Level Systems: the Spherical-Coordinate Point of View , 2005, Open Syst. Inf. Dyn..
[6] R. Brockett,et al. Time optimal control in spin systems , 2000, quant-ph/0006114.
[7] U. Fano,et al. Pairs of two-level systems , 1983 .
[8] Jing Zhang,et al. Asymptotically noise decoupling for Markovian open quantum systems , 2007 .
[9] Herschel Rabitz,et al. Quantum control by decompositions of SU(2) , 2000 .
[10] KuÅ,et al. Geometry of entangled states , 2001 .
[11] A. Mandilara,et al. Elliptical orbits in the Bloch sphere , 2005 .
[12] J. Eberly,et al. Optical resonance and two-level atoms , 1975 .
[13] N. Khaneja,et al. Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.
[14] U. Boscain,et al. Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.
[15] C. Altafini,et al. QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.
[16] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[17] R. Mosseri,et al. Geometry of entangled states, Bloch spheres and Hopf fibrations , 2001, quant-ph/0108137.
[18] Daniel A. Lidar,et al. Stabilizing qubit coherence via tracking-control , 2005, Quantum Inf. Comput..