State transfer control of quantum systems on the Bloch sphere

The state transfer under control fields is analyzed based on the Bloch sphere representation of a single qubit. In order to achieve the target from an arbitrary initial state to a target state, the conditions that parameters should satisfy are deduced separately in two different requirements: One is in the case of the rotation angle around the x-axis being fixed and another is in the situation with a given evolution time. Several typical states trajectories are demonstrated by numerical simulations on the Bloch sphere. The relations between parameters and the trajectories are analyzed.

[1]  G. Kimura The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[3]  C. Altafini,et al.  Quantum Markovian master equation driven by coherent controls: a controllability analysis , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  K. Wódkiewicz,et al.  Stochastic decoherence of qubits. , 2001, Optics express.

[5]  Andrzej Kossakowski,et al.  The Bloch-Vector Space for N-Level Systems: the Spherical-Coordinate Point of View , 2005, Open Syst. Inf. Dyn..

[6]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[7]  U. Fano,et al.  Pairs of two-level systems , 1983 .

[8]  Jing Zhang,et al.  Asymptotically noise decoupling for Markovian open quantum systems , 2007 .

[9]  Herschel Rabitz,et al.  Quantum control by decompositions of SU(2) , 2000 .

[10]  KuÅ,et al.  Geometry of entangled states , 2001 .

[11]  A. Mandilara,et al.  Elliptical orbits in the Bloch sphere , 2005 .

[12]  J. Eberly,et al.  Optical resonance and two-level atoms , 1975 .

[13]  N. Khaneja,et al.  Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.

[14]  U. Boscain,et al.  Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.

[15]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[16]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[17]  R. Mosseri,et al.  Geometry of entangled states, Bloch spheres and Hopf fibrations , 2001, quant-ph/0108137.

[18]  Daniel A. Lidar,et al.  Stabilizing qubit coherence via tracking-control , 2005, Quantum Inf. Comput..