The Geometry of Nonparametric Filament Estimation

We consider the problem of estimating filamentary structure from d-dimensional point process data. We make some connections with computational geometry and develop nonparametric methods for estimating the filaments. We show that, under weak conditions, the filaments have a simple geometric representation as the medial axis of the data distribution’s support. Our methods convert an estimator of the support’s boundary into an estimator of the filaments. We also find the rates of convergence of our estimators. Proofs of all results are in the supplementary material available online.

[1]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[2]  Euclid,et al.  Advances in Applied Probability , 1981, Journal of Applied Probability.

[3]  L. Devroye,et al.  Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .

[4]  J. Barrow,et al.  Minimal spanning trees, filaments and galaxy clustering , 1985 .

[5]  M. Lachièze‐Rey,et al.  Statistics of the galaxy distribution , 1989 .

[6]  R. Tibshirani Principal curves revisited , 1992 .

[7]  Three-dimensional shape statistics: Methodology , 1995 .

[8]  A. Raftery,et al.  Detecting features in spatial point processes with clutter via model-based clustering , 1998 .

[9]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[10]  J. Maddocks,et al.  Global curvature, thickness, and the ideal shapes of knots. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[12]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[14]  Bernhard Schölkopf,et al.  Regularized Principal Manifolds , 1999, J. Mach. Learn. Res..

[15]  Enn Saar,et al.  Statistics of the Galaxy Distribution , 2001 .

[16]  Sanjeev R. Kulkarni,et al.  Principal curves with bounded turn , 2002, IEEE Trans. Inf. Theory.

[17]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[18]  O. Gonzalez,et al.  Global curvature and self-contact of nonlinearly elastic curves and rods , 2002 .

[19]  Stefan Funke,et al.  Curve reconstruction from noisy samples , 2003, SCG '03.

[20]  S. Colombi,et al.  Skeleton as a probe of the cosmic web : the two-dimensional case , 2003, astro-ph/0307003.

[21]  D. Donoho,et al.  Adaptive multiscale detection of filamentary structures embedded in a background of uniform random points , 2003 .

[22]  Josiane Zerubia,et al.  A Gibbs Point Process for Road Extraction from Remotely Sensed Images , 2004, International Journal of Computer Vision.

[23]  A. Cuevas,et al.  On boundary estimation , 2004, Advances in Applied Probability.

[24]  J. Mateu,et al.  Detection of cosmic filaments using the Candy model , 2004, astro-ph/0405370.

[25]  H. K. Eriksen,et al.  Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004 .

[26]  Josiane Zerubia,et al.  Point processes for unsupervised line network extraction in remote sensing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Xiaoming Huo,et al.  ADAPTIVE MULTISCALE DETECTION OF FILAMENTARY STRUCTURES IN A BACKGROUND OF UNIFORM RANDOM POINTS 1 , 2006 .

[28]  The 3D skeleton of the SDSS , 2006, astro-ph/0602628.

[29]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[30]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[31]  T. Hastie,et al.  Principal Curves , 2007 .

[32]  Vicent J. Martinez,et al.  A three‐dimensional object point process for detection of cosmic filaments , 2007, 0809.4358.

[33]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[34]  L. Wasserman,et al.  On the path density of a gradient field , 2008, 0805.4141.

[35]  Rien van de Weygaert,et al.  Geometry and Morphology of the Cosmic Web: Analyzing Spatial Patterns in the Universe , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[36]  A. Cuevas,et al.  On Statistical Properties of Sets Fulfilling Rolling-Type Conditions , 2011, Advances in Applied Probability.

[37]  Larry A. Wasserman,et al.  Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..