An optimal time–space algorithm for dense stereo matching

The increasing demand for higher resolution images and higher frame rate videos will always pose a challenge to computational power when real-time performance is required to solve the stereo-matching problem in 3D reconstruction applications. Therefore, the use of asymptotic analysis is necessary to measure the time and space performance of stereo-matching algorithms regardless of the size of the input and of the computational power available. In this paper, we survey several classic stereo-matching algorithms with regard to time–space complexity. We also report running time experiments for several algorithms that are consistent with our complexity analysis. We present a new dense stereo-matching algorithm based on a greedy heuristic path computation in disparity space. A procedure which improves disparity maps in depth discontinuity regions is introduced. This procedure works as a post-processing step for any technique that solves the dense stereo-matching problem. We prove that our algorithm and post-processing procedure have optimal O(n) time–space complexity, where n is the size of a stereo image. Our algorithm performs only a constant number of computations per pixel since it avoids a brute force search over the disparity range. Hence, our algorithm is faster than “real-time” techniques while producing comparable results when evaluated with ground-truth benchmarks. The correctness of our algorithm is demonstrated with experiments in real and synthetic data.

[1]  Luc Van Gool,et al.  Combined Depth and Outlier Estimation in Multi-View Stereo , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[3]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[4]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Masatsugu Kidode,et al.  An iterative prediction and correction method for automatic stereocomparison , 1973, Comput. Graph. Image Process..

[6]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Federico Tombari,et al.  Segmentation-Based Adaptive Support for Accurate Stereo Correspondence , 2007, PSIVT.

[8]  D. Nistér,et al.  Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Robert T. Collins,et al.  A space-sweep approach to true multi-image matching , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Sang Hwa Lee,et al.  Hierarchical stochastic diffusion for disparity estimation , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[12]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Richard Szeliski,et al.  Stereo Matching with Nonlinear Diffusion , 1998, International Journal of Computer Vision.

[14]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[15]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Carlo Tomasi,et al.  Multiway cut for stereo and motion with slanted surfaces , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  R. D. Arnold Automated stereo perception , 1983 .

[20]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[21]  H. Mayer ANALYSIS OF MEANS TO IMPROVE COOPERATIVE DISPARITY ESTIMATION , 2003 .

[22]  Andrew Blake,et al.  Efficient Dense Stereo with Occlusions for New View-Synthesis by Four-State Dynamic Programming , 2006, International Journal of Computer Vision.

[23]  Antonio Criminisi,et al.  Dense stereo using pivoted dynamic programming , 2004, Image Vis. Comput..

[24]  Martin D. Levine,et al.  Computer determination of depth maps , 1973, Comput. Graph. Image Process..

[25]  H. Hirschmüller Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Stereo Processing by Semi-global Matching and Mutual Information , 2022 .

[26]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Peter N. Belhumeur,et al.  A Bayesian approach to binocular steropsis , 1996, International Journal of Computer Vision.

[28]  Carlo Tomasi,et al.  Depth Discontinuities by Pixel-to-Pixel Stereo , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[29]  Olga Veksler,et al.  Stereo Correspondence with Compact Windows via Minimum Ratio Cycle , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[31]  R. Zabih,et al.  Efficient Graph-Based Energy Minimization Methods in Computer Vision , 1999 .

[32]  Richard Szeliski,et al.  Stereo matching with non-linear diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Minglun Gong,et al.  Near real-time reliable stereo matching using programmable graphics hardware , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Ruigang Yang,et al.  Multi-resolution real-time stereo on commodity graphics hardware , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[35]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[37]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[38]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  B. Julesz,et al.  Modifications of the Classical Notion of Panum's Fusional Area , 1980, Perception.

[40]  Sing Bing Kang,et al.  Stereo for Image-Based Rendering using Image Over-Segmentation , 2007, International Journal of Computer Vision.

[41]  Philip E. Gill,et al.  Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..

[42]  Olga Veksler,et al.  Stereo correspondence by dynamic programming on a tree , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[43]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[44]  Carlo Tomasi,et al.  Surfaces with occlusions from layered stereo , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[46]  Miao Liao,et al.  High-Quality Real-Time Stereo Using Adaptive Cost Aggregation and Dynamic Programming , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[47]  David Mumford,et al.  A Bayesian treatment of the stereo correspondence problem using half-occluded regions , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  B. Julesz,et al.  A disparity gradient limit for binocular fusion. , 1980, Science.

[50]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[51]  Heiko Hirschmüller,et al.  Improvements in real-time correlation-based stereo vision , 2001, CVPR 2001.

[52]  Jan-Michael Frahm,et al.  Variable baseline/resolution stereo , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Changming Sun Multi-Resolution Stereo Matching Using Maximum-Surface Techniques , 2012 .