A modular approach for simulation-based optimization of MEMS

Abstract The importance of MEMS optimization concerning performance, power consumption, and reliability is increasing. A variety of specialized tools is available in the MEMS design flow. FEM tools (ANSYS, CFD-ACE+) are widely used on component level. System level simulations are carried out using simplified models and simulators like Saber or ELDO. There is a lack of simulator-independent optimization support. Only a few simulators offer optimization capabilities. Our approach aims at a flexible combination of simulators and optimization algorithms by partitioning the optimization cycle into simulation, error calculation, optimization and model generation. This new method is translated into a modular optimization system named Moscito implemented in Java. Several optimization algorithms are available: methods without derivatives, methods using derivatives and stochastic approaches. Interfaces to simulators like ANSYS, Saber, MATLAB are implemented. Thus the optimization problem can be handled on different levels of model abstraction (FEM, ordinary differential equations, generalized networks, block diagrams, etc.). A graphical user interface supports control and visualization of the optimization. The modules of the optimization system are able to communicate via the Internet to allow a distributed, web-based optimization.

[1]  William H. Press,et al.  Numerical recipes in C , 2002 .

[2]  Ingo Sieber,et al.  Comparison of Evolutionary Algorithms for Design Optimization , 1998, PPSN.

[3]  R. Neul,et al.  A modeling approach to include mechanical microsystem components into the system simulation , 1998, Proceedings Design, Automation and Test in Europe.

[4]  C. Clauss,et al.  Extended admittance description of nonlinear n-poles , 1995 .

[5]  R. Fletcher Practical Methods of Optimization , 1988 .

[6]  W. Jakob,et al.  Simulationsgestützte Optimierung von heterogenen Systemen , 2001 .

[7]  Michael A. Bodie The Book of Sax: The Simple API for XML , 2002 .

[8]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[9]  Hilding Elmqvist,et al.  Object-oriented modeling of hybrid systems , 1993 .

[10]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[11]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  H. Landes,et al.  Coupled finite element and network simulation for microsystem components , 1997 .

[14]  A. Schneider,et al.  Ein modulares Optimierungssystem für den Mikrosystem- und Schaltungsentwurf , 1996 .

[15]  Gerhard Wachutka,et al.  Tailored modeling: A way to the 'virtual microtransducer fab'? , 1995 .

[16]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[17]  J. Z. Zhu,et al.  The finite element method , 1977 .

[18]  Donald D. Chamberlin,et al.  W3C World Wide Web Consortium , 2003 .

[19]  Walter Koch,et al.  Object-oriented behavioural modelling of mechatronic systems , 1995 .

[20]  Stefan Wünsche Simulator Coupling for Electro-Thermal Simulation of Integrated Circuits , 1996 .

[21]  Philip E. Gill,et al.  Practical optimization , 1981 .