Quantum similarity measures under atomic shell approximation: First order density fitting using elementary Jacobi rotations

The elementary Jacobi rotations technique is proposed as a useful tool to obtain fitted electronic density functions expressed as linear combinations of atomic spherical shells, with the additional constraint that all coefficients are kept positive. Moreover, a Newton algorithm has been implemented to optimize atomic shell exponents, minimizing the quadratic error integral function between ab initio and fitted electronic density functions. Although the procedure is completely general, as an application example both techniques have been used to compute a 1S‐type Gaussian basis for atoms H through Kr, fitted from a 3‐21G basis set. Subsequently, molecular electronic densities are modeled in a promolecular approximation, as a simple sum of parameterized atomic contributions. This simple molecular approximation has been employed to show, in practice, its usefulness to some computational examples in the field of molecular quantum similarity measures. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 2023–2039, 1997

[1]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[2]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[3]  Klaus Ruedenberg,et al.  Electron Correlation and Separated‐Pair Approximation. An Application to Berylliumlike Atomic Systems , 1968 .

[4]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[5]  K. Ruedenberg,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. III. Imidogen , 1970 .

[6]  D. Hoffman,et al.  Generalization of Euler Angles to N-Dimensional Orthogonal Matrices , 1972 .

[7]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[8]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[9]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[10]  R. Carbó,et al.  Elementary Unitary MO Transformations and SCF Theory , 1982 .

[11]  M. Persico,et al.  Avoided crossing of molecular excited states and photochemistry: Butadiene and unprotonated Schiff base , 1983 .

[12]  D. L. Cooper,et al.  Bond formation in momentum space , 1987 .

[13]  Paul G. Mezey,et al.  The shape of molecular charge distributions: Group theory without symmetry , 1987 .

[14]  Ramon Carbó,et al.  LCAO–MO similarity measures and taxonomy† , 1987 .

[15]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[16]  M. Klobukowski,et al.  Well-tempered gaussian basis set expansions of Roothaan-Hartree-Fock atomic wavefunctions for lithium through mercury , 1988 .

[17]  Jacobi Rotations: A General Procedure for Electronic Energy Optimization* , 1989 .

[18]  R. Carbó,et al.  Ariadne-88: An ab initio monoconfigurational closed and open shell direct electronic energy calculation using elementary Jacobi rotations , 1989 .

[19]  Blanca Calabuig,et al.  Molsimil - 88: Molecular similarity calculations using a CNDO-like approximation , 1989 .

[20]  K. Ruedenberg,et al.  Nonspherical atomic ground‐state densities and chemical deformation densities from x‐ray scattering , 1990 .

[21]  R. Ponec,et al.  Topological aspects of chemical reactivity. Evans-Dewar principle in terms of molecular similarity approach , 1991 .

[22]  Eugene D. Fleischmann,et al.  Assessing molecular similarity from results of ab initio electronic structure calculations , 1991 .

[23]  J. V. Ortiz,et al.  Molecular similarity indices in electron propagator theory , 1991 .

[24]  Robert Ponec,et al.  Electron correlation in pericyclic reactivity : a similarity approach , 1992 .

[25]  Blanca Calabuig,et al.  A concurrent algorithm for parallel calculation of eigenvalues and eigenvectors of real symmetric matrices , 1992 .

[26]  R. Carbó,et al.  Molecular quantum similarity measures and N-dimensional representation of quantum objects. I. Theoretical foundations† , 1992 .

[27]  David L. Cooper,et al.  Molecular dissimilarity: a momentum-space criterion , 1992 .

[28]  A. Good,et al.  Structure-activity relationships from molecular similarity matrices. , 1993, Journal of medicinal chemistry.

[29]  H. Schaefer,et al.  Efficient use of Jacobi rotations for orbital optimization and localization , 1993 .

[30]  Jordi Mestres,et al.  Use of ab Initio Quantum Molecular Similarities as an Interpretative Tool for the Study of Chemical Reactions , 1994 .

[31]  Jordi Mestres,et al.  On the calculation of ab initio quantum molecular similarities for large systems: Fitting the electron density , 1994, J. Comput. Chem..

[32]  Emili Besalú,et al.  Molecular Quantum Similarity: theoretical Framework, Ordering Principles, and Visualization Techniques12 , 1994 .

[33]  Ramón Carbó,et al.  Molecular similarity and reactivity : from quantum chemical to phenomenological approaches , 1995 .

[34]  J. Mestres,et al.  Foundations and recent developments on molecular quantum similarity , 1995 .

[35]  Ramon Carbó-Dorca,et al.  Atomic Shell Approximation: Electron Density Fitting Algorithm Restricting Coefficients to Positive Values , 1995, J. Chem. Inf. Comput. Sci..

[36]  Ramon Carbó Molecular Similarity and Reactivity , 1995 .

[37]  R. Carbó-Dorca,et al.  Quantum molecular similarity measures (QMSM) and the atomic shell approximation (ASA) , 1996 .

[38]  F. J. Luque,et al.  EFFECT OF SOLVATION ON THE CHARGE DISTRIBUTION OF A SERIES OF ANIONIC, NEUTRAL, AND CATIONIC SPECIES. A QUANTUM MOLECULAR SIMILARITY STUDY , 1996 .

[39]  R. Carbó-Dorca,et al.  A procedure to obtain an accurate approximation to a full CI wavefunction , 1996 .

[40]  R. Carbó-Dorca,et al.  Quantum molecular similarity measures , 1996 .

[41]  Emili Besalú,et al.  APPLICATION OF MOLECULAR QUANTUM SIMILARITY TO QSAR , 1997 .

[42]  Ramon Carbó-Dorca,et al.  Toward a global maximization of the molecular similarity function: Superposition of two molecules , 1997 .

[43]  J. Cioslowski,et al.  Accurate analytical representations of the core-electron densities of the elements 3 through 118 , 1997 .