Highly Efficient InP/GaAsSb DHBTs With 62% Power-Added Efficiency at 40 GHz

We report the large-signal load-pull characterization of InP/GaAsSb double heterojunction bipolar transistors (DHBTs) with fT and fMAX cutoff frequencies as high as 380 and 320 GHz, respectively. Measurements were performed at 40 GHz in a passive load-pull system to characterize the output power and power-added-efficiency (PAE) performance. A PAE of 60% with an output power of 10 dBm (corresponding to power densities of approximately 870 mW/mm and 1.45 mW/μm2) was achieved in class AB operation. This excellent performance can be attributed to the low offset and knee voltages associated with the InP/GaAsSb type-II heterojunctions. To the best of our knowledge, the present performance exceeds published state-of-the-art results for HBTs at a frequency of 40 GHz.

[1]  S. P. Watkins,et al.  InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs , 2001 .

[2]  Jean-Christophe Nallatamby,et al.  V-Band Amplifier MMICs Using Multi-Finger InP/GaAsSb DHBT Technology , 2009, 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium.

[3]  Adele E. Schmitz,et al.  High-efficiency GaAs-based pHEMT power amplifier technology for 1-18 GHz , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[4]  Y. Baeyens,et al.  Semiconductor technologies for higher frequencies , 2009, IEEE Microwave Magazine.

[5]  C. Bolognesi,et al.  15-nm base type-II InP/GaAsSb/InP DHBTs with F/sub T/=384 GHz and a 6-V BV/sub CEO/ , 2006, IEEE Transactions on Electron Devices.

[6]  Tatsuo Itoh,et al.  RF technologies for low power wireless communications , 2001 .

[7]  M. Micovic,et al.  The state-of-the-art of GaAs and InP power devices and amplifiers , 2001 .

[8]  P. Chin,et al.  K-band 76% PAE InP double heterojunction bipolar power transistors and a 23 GHz compact linear power amplifier MMIC , 2000, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuits Symposium. 22nd Annual Technical Digest 2000. (Cat. No.00CH37084).

[9]  K. Nichols,et al.  High efficiency monolithic InP HEMT V-band power amplifier , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[10]  O. Ostinelli,et al.  600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded-Base and fT x BVCEO ≫ 2.5 THz-V at Room Temperature , 2007, 2007 IEEE International Electron Devices Meeting.

[11]  Hansruedi Benedickter,et al.  400-GHz InP/GaAsSb DHBTs With Low-Noise Microwave Performance , 2010, IEEE Electron Device Letters.

[12]  F. Blache,et al.  A 90% power-added-efficiency GaInP/GaAs HBT for L-band radar and mobile communication systems , 1996, IEEE Microwave and Guided Wave Letters.

[13]  C. McGuire,et al.  55% PAE and High Power Ka-Band GaN HEMTs With Linearized Transconductance via $\hbox{n}+$ GaN Source Contact Ledge , 2008, IEEE Electron Device Letters.

[14]  N. Kukutsu,et al.  10-Gbit/s Wireless Link Using InP HEMT MMICs for Generating 120-GHz-Band Millimeter-Wave Signal , 2009, IEEE Transactions on Microwave Theory and Techniques.

[15]  Y.C. Chen,et al.  A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier , 1999, 1999 IEEE Radio Frequency Integrated Circuits Symposium (Cat No.99CH37001).

[16]  Y.C. Chen,et al.  A 95-GHz InP HEMT MMIC amplifier with 427-mW power output , 1998, IEEE Microwave and Guided Wave Letters.

[17]  Takyiu Liu,et al.  InP-based DHBT with 90% power-added efficiency and 1 W output power at 2 GHZ , 1997 .

[20]  S. P. Watkins,et al.  15-nm Base Type-II InP/GaAsSb/InP DHBTs With GHz and a 6-V BV , 2006 .