Quantile-Based Risk Sharing

We address the problem of risk sharing among agents using a two-parameter class of quantile-based risk measures, the so-called Range-Value-at-Risk (RVaR), as their preferences. The family of RVaR includes the Value-at-Risk (VaR) and the Expected Shortfall (ES), the two popular and competing regulatory risk measures, as special cases. We first establish an inequality for RVaR-based risk aggregation, showing that RVaR satisfies a special form of subadditivity. Then, the risk sharing problem is solved through explicit construction. Three relevant issues on optimal allocation are investigated: extra sources of randomness, comonotonicty, and model uncertainty. We show that, in general, a robust optimal allocation exists if and only if none of the underlying risk measures is a VaR. Practical implications of our main results for risk management and policy makers are discussed. In particular, in the context of the calculation of regulatory capital, we provide some general guidelines on how a regulatory risk measure can lead to certain desirable or undesirable properties of risk sharing among firms. Several novel advantages of ES over VaR from the perspective of a regulator are thereby revealed.

[1]  Bin Wang,et al.  Aggregation-robustness and model uncertainty of regulatory risk measures , 2015, Finance Stochastics.

[2]  Stefan Weber,et al.  Solvency II, or how to sweep the downside risk under the carpet , 2017, Insurance, Mathematics & Economics.

[3]  N. Bäuerle,et al.  Stochastic Orders and Risk Measures: Consistency and Bounds , 2006 .

[4]  Wei Cui,et al.  Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles , 2013 .

[5]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[6]  DuZaichao,et al.  Backtesting Expected Shortfall , 2017 .

[7]  Alberto Floreani,et al.  Risk Measures and Capital Requirements: A Critique of the Solvency II Approach , 2013 .

[8]  Mathieu Cambou,et al.  MODEL UNCERTAINTY AND SCENARIO AGGREGATION , 2014 .

[9]  Guillaume Carlier,et al.  Pareto efficiency for the concave order and multivariate comonotonicity , 2009, J. Econ. Theory.

[10]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[11]  Ludger Rüschendorf,et al.  Mathematical Risk Analysis: Dependence, Risk Bounds, Optimal Allocations and Portfolios , 2013 .

[12]  Elisa Mastrogiacomo,et al.  Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures , 2015 .

[13]  Ruodu Wang,et al.  Regulatory arbitrage of risk measures , 2015 .

[14]  S. Vanduffel,et al.  A New Approach to Assessing Model Risk in High Dimensions , 2015 .

[15]  Johanna F. Ziegel,et al.  COHERENCE AND ELICITABILITY , 2013, 1303.1690.

[16]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[17]  Chen Chen,et al.  An Axiomatic Approach to Systemic Risk , 2013, Manag. Sci..

[18]  Paul Embrechts,et al.  The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis , 2010, ASTIN Bulletin.

[19]  Johan Walden,et al.  Equilibrium with Monoline and Multiline Insurers , 2015 .

[20]  Guillaume Carlier,et al.  Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities , 2008 .

[21]  P. Embrechts,et al.  Model Uncertainty and VaR Aggregation , 2013 .

[22]  Wim Schoutens,et al.  Structured products equilibria in conic two price markets , 2011 .

[23]  X. Zhou,et al.  ARROW–DEBREU EQUILIBRIA FOR RANK‐DEPENDENT UTILITIES , 2016 .

[24]  Damir Filipovic,et al.  Optimal capital and risk allocations for law- and cash-invariant convex functions , 2008, Finance Stochastics.

[25]  C. Le Van,et al.  OVERLAPPING SETS OF PRIORS AND THE EXISTENCE OF EFFICIENT ALLOCATIONS AND EQUILIBRIA FOR RISK MEASURES , 2010 .

[26]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[27]  Arne Sandström,et al.  Handbook of Solvency for Actuaries and Risk Managers: Theory and Practice , 2010 .

[28]  Pauline Barrieu,et al.  Inf-convolution of risk measures and optimal risk transfer , 2005, Finance Stochastics.

[29]  Paul Embrechts,et al.  A note on generalized inverses , 2013, Math. Methods Oper. Res..

[30]  M. Frittelli,et al.  Law invariant convex risk measures , 2005 .

[31]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[32]  K. Borch Equilibrium in a Reinsurance Market , 1962 .

[33]  E. Jouini,et al.  OPTIMAL RISK SHARING FOR LAW INVARIANT MONETARY UTILITY FUNCTIONS , 2008 .

[34]  Michael Curran Backtesting Expected Shortfall , 2014 .

[35]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[36]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[37]  Hanqing Jin,et al.  Arrow–Debreu equilibria for rank‐dependent utilities with heterogeneous probability weighting , 2018, Mathematical Finance.

[38]  V. Acharya A Theory of Systemic Risk and Design of Prudential Bank Regulation , 2001 .

[39]  Volker Krätschmer,et al.  Comparative and qualitative robustness for law-invariant risk measures , 2012, Finance Stochastics.

[40]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[41]  Dwight M. Jaffee,et al.  Monoline Restrictions, with Applications to Mortgage Insurance and Title Insurance , 2006 .

[42]  Fabio Bellini,et al.  Elicitable Risk Measures , 2014 .

[43]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[44]  X. Zhou,et al.  Optimal Insurance Design Under Rank-Dependent Expected Utility , 2012 .

[45]  Volker Krätschmer,et al.  Qualitative and infinitesimal robustness of tail-dependent statistical functionals , 2012, J. Multivar. Anal..

[46]  X. Zhou,et al.  OPTIMAL INSURANCE DESIGN UNDER RANK‐DEPENDENT EXPECTED UTILITY , 2015 .

[47]  G. Carlier,et al.  Pareto optima and equilibria when preferences are incompletely known , 2013, J. Econ. Theory.

[48]  L. C. G. Rogers,et al.  Failure and Rescue in an Interbank Network , 2011, Manag. Sci..

[49]  Beatrice Acciaio Optimal risk sharing with non-monotone monetary functionals , 2007, Finance Stochastics.

[50]  K. S. Tan,et al.  Optimal reinsurance under VaR and CTE risk measures , 2008 .

[51]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[52]  Alexander J. McNeil,et al.  Quantitative Risk Management: Concepts, Techniques and Tools Revised edition , 2015 .

[53]  P. Embrechts,et al.  An Academic Response to Basel 3.5 , 2014 .

[54]  Jan Dhaene,et al.  Remarks on quantiles and distortion risk measures , 2012 .

[55]  M. Kratz,et al.  What is the Best Risk Measure in Practice? A Comparison of Standard Measures , 2013, 1312.1645.

[56]  Steven Kou,et al.  On the Measurement of Economic Tail Risk , 2014, Oper. Res..

[57]  Miryana Grigorova,et al.  Stochastic dominance with respect to a capacity and risk measures , 2014 .

[58]  Romain Deguest,et al.  Robustness and sensitivity analysis of risk measurement procedures , 2008 .

[59]  Roger J. A. Laeven,et al.  Robust optimal risk sharing and risk premia in expanding pools , 2016, 1601.06979.

[60]  Patrick Cheridito,et al.  RISK MEASURES ON ORLICZ HEARTS , 2009 .

[61]  K. Arrow An Extension of the Basic Theorems of Classical Welfare Economics , 1951 .

[62]  Yongsheng Song,et al.  Risk Measures with Comonotonic Subadditivity or Convexity and Respecting Stochastic Orders , 2022 .

[63]  S. Kou,et al.  On the Measurement of Economic Tail Risk , 2014 .

[64]  Alexander Schied,et al.  On the Neyman–Pearson problem for law-invariant risk measures and robust utility functionals , 2004, math/0407127.

[65]  Isaac Meilijson,et al.  Co-monotone allocations, Bickel-Lehmann dispersion and the Arrow-Pratt measure of risk aversion , 1994, Ann. Oper. Res..

[66]  Ruodu Wang,et al.  How Superadditive Can a Risk Measure Be? , 2015, SIAM J. Financial Math..

[67]  Kent Osband,et al.  Providing incentives for better cost forecasting , 1985 .

[68]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[69]  Alain Chateauneuf,et al.  Optimal Risk-Sharing Rules and Equilibria With Non-Additive Expected Utility , 1997 .

[70]  Andreas Tsanakas,et al.  To Split or Not to Split: Capital Allocation with Convex Risk Measures , 2007 .

[71]  D. Heath,et al.  Pareto Equilibria with coherent measures of risk , 2004 .

[72]  Freddy Delbaen,et al.  Monetary utility functions , 2012 .

[73]  Johanna F. Ziegel,et al.  Higher order elicitability and Osband’s principle , 2015, 1503.08123.

[74]  Ruodu Wang,et al.  Seven Proofs for the Subadditivity of Expected Shortfall , 2015 .

[75]  Steven Kou,et al.  External Risk Measures and Basel Accords , 2013, Math. Oper. Res..

[76]  Ludger Rüschendorf,et al.  On comonotonicity of Pareto optimal risk sharing , 2008 .

[77]  Henryk Zähle,et al.  A definition of qualitative robustness for general point estimators, and examples , 2014, J. Multivar. Anal..

[78]  Valeria Bignozzi,et al.  Risk measures with the CxLS property , 2014, Finance Stochastics.

[79]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[80]  Stefan Weber,et al.  Measures of Systemic Risk , 2015, SIAM J. Financial Math..