A Convex Approximation for Two-Stage Mixed-Integer Recourse Models with a Uniform Error Bound

We develop a convex approximation for two-stage mixed-integer recourse models, and we derive an error bound for this approximation that depends on the total variations of the probability density functions of the random variables in the model. We show that the error bound converges to zero if all these total variations converge to zero. Our convex approximation is a generalization of the one in Romeijnders, van der Vlerk, and Klein Haneveld [Math. Program., to appear] restricted to totally unimodular integer recourse models. For this special case it has the best worst-case error bound possible. The error bound in this paper is the first in the general setting of mixed-integer recourse models. As main building blocks in its derivation we generalize the asymptotic periodicity results of Gomory [Linear Algebra Appl., 2 (1969), pp. 451--558] for pure integer programs to the mixed-integer case, and we use the total variation error bounds on the expectation of periodic functions derived in Romeijnders, van der V...

[1]  Charles E. Blair,et al.  The value function of a mixed integer program: I , 1977, Discret. Math..

[2]  Leen Stougie,et al.  Simple integer recourse models: convexity and convex approximations , 2006, Math. Program..

[3]  Maarten H. van der Vlerk Convex approximations for a class of mixed-integer recourse models , 2010, Ann. Oper. Res..

[4]  Leen Stougie,et al.  Approximation in two-stage stochastic integer programming , 2014 .

[5]  Maarten H. van der Vlerk,et al.  Convex approximations for complete integer recourse models , 2004, Math. Program..

[6]  María Merino,et al.  An exact algorithm for solving large-scale two-stage stochastic mixed-integer problems: Some theoretical and experimental aspects , 2010, Eur. J. Oper. Res..

[7]  Maarten H. van der Vlerk,et al.  Convex Approximations for Totally Unimodular Integer Recourse Models: A Uniform Error Bound , 2015, SIAM J. Optim..

[8]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[9]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[10]  Laurence A. Wolsey Group-Theoretic Results in Mixed Integer Programming , 1971, Oper. Res..

[11]  Roger J.-B. Wets,et al.  Lifting projections of convex polyhedra. , 1969 .

[12]  Yongpei Guan,et al.  Cutting Planes for Multistage Stochastic Integer Programs , 2009, Oper. Res..

[13]  Hans-Jürgen Zimmermann,et al.  On stochastic integer programming , 1975, Z. Oper. Research.

[14]  Charles E. Blair,et al.  The value function of a mixed integer program: II , 1979, Discret. Math..

[15]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[16]  Leen Stougie,et al.  Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis , 1995, Math. Program..

[17]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[18]  Alan J. King,et al.  Modeling with Stochastic Programming , 2012 .

[19]  Lewis Ntaimo,et al.  Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse , 2010, Oper. Res..

[20]  Maarten H. van der Vlerk,et al.  Total variation bounds on the expectation of periodic functions with applications to recourse approximations , 2016, Math. Program..

[21]  Takayuki Shiina,et al.  Stochastic Programming with Integer Variables , 2007, CSC.

[22]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[23]  Julia L. Higle,et al.  The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification , 2005, Math. Program..

[24]  William T. Ziemba,et al.  Stochastic Programming:Applications in Finance, Energy, Planning and Logistics , 2013 .

[25]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[26]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[27]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .