Cardioprotective properties of bradykinin: role of the B2 receptor

[1]  H. Gavras,et al.  Cardioprotective effects of a selective B(2) receptor agonist of bradykinin post-acute myocardial infarct. , 2010, American journal of hypertension.

[2]  H. Gavras,et al.  Modulation of Angiotensin II–Mediated Cardiac Remodeling by the MEF2A Target Gene Xirp2 , 2010, Circulation research.

[3]  H. Gavras,et al.  Cell Signaling, Internalization, and Nuclear Localization of the Angiotensin Converting Enzyme in Smooth Muscle and Endothelial Cells* , 2009, The Journal of Biological Chemistry.

[4]  I. Gavras,et al.  Angiotensin inhibition and malignancies: a review , 2009, Journal of Human Hypertension.

[5]  M. Amblard,et al.  Structure–activity relationships of novel peptide agonists of the human bradykinin B2 receptor , 2009, Peptides.

[6]  Anindita Das,et al.  Loss of Myocardial Ischemic Postconditioning in Adenosine A1 and Bradykinin B2 Receptors Gene Knockout Mice , 2008, Circulation.

[7]  H. Gavras,et al.  Angiotensin-Converting Enzyme Inhibition After Experimental Myocardial Infarct: Role of the Kinin B1 and B2 Receptors , 2008, Hypertension.

[8]  L. Chao,et al.  Differential role of kinin B1 and B2 receptors in ischemia-induced apoptosis and ventricular remodeling , 2007, Peptides.

[9]  J. Vinten-johansen,et al.  Postconditioning: reduction of reperfusion-induced injury. , 2006, Cardiovascular research.

[10]  Azra Mahmud,et al.  Arterial Stiffness Is Related to Systemic Inflammation in Essential Hypertension , 2005, Hypertension.

[11]  H. Gavras,et al.  Angiotensin-converting enzyme regulates bradykinin receptor gene expression. , 2005, American journal of physiology. Heart and circulatory physiology.

[12]  H. Gavras,et al.  A novel gene (Cmya3) induced in the heart by angiotensin II-dependent but not salt-dependent hypertension in mice. , 2005, American journal of hypertension.

[13]  K. Kostner,et al.  Increased expression of bradykinin type-1 receptors in endothelium of intramyocardial coronary vessels in human failing hearts. , 2005, American journal of physiology. Heart and circulatory physiology.

[14]  H. Gavras,et al.  Age-related changes of bradykinin B1 and B2 receptors in rat heart. , 2005, American journal of physiology. Heart and circulatory physiology.

[15]  L. Bautista,et al.  Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension , 2005, Journal of Human Hypertension.

[16]  Jing Ma,et al.  Inflammatory markers and the risk of coronary heart disease in men and women. , 2004, The New England journal of medicine.

[17]  H. Gavras,et al.  Novel targets of ANG II regulation in mouse heart identified by serial analysis of gene expression. , 2004, American journal of physiology. Heart and circulatory physiology.

[18]  A. Hofman,et al.  C-reactive protein and arterial stiffness in older adults: the Rotterdam Study. , 2004, Atherosclerosis.

[19]  P. Ridker,et al.  High-sensitivity C-reactive protein: clinical importance. , 2004, Current problems in cardiology.

[20]  Yasmin,et al.  C-Reactive Protein Is Associated With Arterial Stiffness in Apparently Healthy Individuals , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[21]  T. Walther,et al.  The bradykinin B1 receptor contributes to the cardioprotective effects of AT1 blockade after experimental myocardial infarction. , 2004, Cardiovascular research.

[22]  H. Gavras,et al.  Mechanisms Mediating the Vasoactive Effects of the B1 Receptors of Bradykinin , 2003, Hypertension.

[23]  J. Rysä,et al.  Expression of bradykinin receptors in the left ventricles of rats with pressure overload hypertrophy and heart failure , 2003, Journal of hypertension.

[24]  H. Heitsch The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease , 2003, Expert opinion on investigational drugs.

[25]  M. Majima,et al.  Bradykinin inhibits development of myocardial infarction through B2 receptor signalling by increment of regional blood flow around the ischaemic lesions in rats , 2003, British journal of pharmacology.

[26]  R. Skidgel,et al.  Activation of bradykinin B1 receptor by ACE inhibitors. , 2002, International immunopharmacology.

[27]  L. Chao,et al.  Kallikrein Gene Delivery Improves Cardiac Reserve and Attenuates Remodeling After Myocardial Infarction , 2002, Hypertension.

[28]  H. Gavras,et al.  Metabolic effects of angiotensin-converting enzyme inhibition: the role of bradykinin , 2002 .

[29]  A. Adam,et al.  Aminopeptidase P in individuals with a history of angio-oedema on ACE inhibitors , 2002, The Lancet.

[30]  H. Gavras,et al.  Role of the B2 Receptor of Bradykinin in Insulin Sensitivity , 2001, Hypertension.

[31]  H. Gavras,et al.  Effects of ANG II on bradykinin receptor gene expression in cardiomyocytes and vascular smooth muscle cells. , 2001, American journal of physiology. Heart and circulatory physiology.

[32]  P. Ridker,et al.  Blood Pressure and Inflammation in Apparently Healthy Men , 2001, Hypertension.

[33]  H. Gavras,et al.  Vasoactive Potential of the B1 Bradykinin Receptor in Normotension and Hypertension , 2001, Circulation research.

[34]  D. Tate,et al.  Sites of interleukin-6 release in patients with acute coronary syndromes and in patients with congestive heart failure. , 2000, The American journal of cardiology.

[35]  T. Walther,et al.  Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Chipkin,et al.  Glucose-insulin-potassium solutions improve outcomes in diabetics who have coronary artery operations. , 2000, The Annals of thoracic surgery.

[37]  T. Walther,et al.  Regulation of the kinin receptors after induction of myocardial infarction: a mini-review. , 2000, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[38]  T. Walther,et al.  Upregulation of bradykinin B1‐receptor expression after myocardial infarction , 2000, British journal of pharmacology.

[39]  T. Walther,et al.  Upregulation of the cardiac bradykinin B2 receptors after myocardial infarction. , 1999, Immunopharmacology.

[40]  O. Carretero,et al.  Role of Nitric Oxide in the Control of Cardiac Oxygen Consumption in B2-Kinin Receptor Knockout Mice , 1999 .

[41]  ChristodoulosStefanadis,et al.  Increased Proinflammatory Cytokines in Patients With Chronic Stable Angina and Their Reduction By Aspirin , 1999 .

[42]  S. El-Dahr,et al.  Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. , 1999, Hypertension.

[43]  P. Lefèbvre,et al.  Insulin Sensitivity, Clearance and Release in Kininogen‐Deficient Rats , 1999, Experimental physiology.

[44]  J. Morrow,et al.  Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. , 1998, The New England journal of medicine.

[45]  D. Bachvarov,et al.  The B1 receptors for kinins. , 1998, Pharmacological reviews.

[46]  S. Jacob,et al.  Effect of chronic bradykinin administration on insulin action in an animal model of insulin resistance. , 1998, American journal of physiology. Regulatory, integrative and comparative physiology.

[47]  N. Glorioso,et al.  Cardiovascular phenotype of a mouse strain with disruption of bradykinin B2-receptor gene. , 1997, Circulation.

[48]  O. Carretero,et al.  Role of kinins in the cardioprotective effect of preconditioning: study of myocardial ischemia/reperfusion injury in B2 kinin receptor knockout mice and kininogen-deficient rats. , 1997, Hypertension.

[49]  O. Carretero,et al.  Salt-sensitive hypertension in bradykinin B2 receptor knockout mice. , 1996, Biochemical and biophysical research communications.

[50]  M. Shichiri,et al.  Bradykinin enhances GLUT4 translocation through the increase of insulin receptor tyrosine kinase in primary adipocytes: evidence that bradykinin stimulates the insulin signalling pathway , 1996, Diabetologia.

[51]  S. Jacob,et al.  Glucose Transport Activity in Insulin-Resistant Rat Muscle: Effects of Angiotensin-Converting Enzyme Inhibitors and Bradykinin Antagonism , 1996, Diabetes.

[52]  S. Jacob,et al.  Potential Role of Bradykinin in Forearm Muscle Metabolism in Humans , 1996, Diabetes.

[53]  C. Strader,et al.  Targeted Disruption of a B2 Bradykinin Receptor Gene in Mice Eliminates Bradykinin Action in Smooth Muscle and Neurons (*) , 1995, The Journal of Biological Chemistry.

[54]  H. Gavras,et al.  Role of bradykinin in insulin sensitivity and blood pressure regulation during hyperinsulinemia. , 1995, Hypertension.

[55]  T. Unger,et al.  Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. , 1995, Pharmacological reviews.

[56]  H. Gavras,et al.  Corcoran Lecture. Angiotensin-converting enzyme inhibition and the heart. , 1994, Hypertension.

[57]  K. Kanmatsuse,et al.  Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. , 1994, Hypertension.

[58]  T. Hullinger,et al.  Reduction of Myocardial Infarct Size in Rabbits by Ramiprilat: Reversal by the Bradykinin Antagonist HOE 140 , 1993, Journal of cardiovascular pharmacology.

[59]  I. Gavras Bradykinin-mediated effects of ACE inhibition. , 1992, Kidney international.

[60]  R. Boucher,et al.  Adenosine receptors on human airway epithelia and their relationship to chloride secretion , 1992, British journal of pharmacology.

[61]  M. Véniant,et al.  Effects of renin-angiotensin system blockade in guinea pigs. , 1992, Hypertension.

[62]  H. Gavras,et al.  Inhibition of nitric oxide, bradykinin, and prostaglandins in normal rats. , 1992, Hypertension.

[63]  O. Carretero,et al.  Local Hormonal Factors (Intracrine, Autocrine, and Paracrine) in Hypertension , 1991, Hypertension.

[64]  W. König,et al.  Hoe 140 a new potent and long acting bradykinin‐antagonist: in vivo studies , 1991, British journal of pharmacology.

[65]  H. Fillit,et al.  Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. , 1990, The New England journal of medicine.

[66]  W. Linz,et al.  Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. , 1990, European journal of pharmacology.

[67]  J. Stewart,et al.  Vasodepressor role of endogenous bradykinin assessed by a bradykinin antagonist. , 1986, Hypertension.

[68]  F. Marceau,et al.  Induction of beta 1-receptors for kinins in the rabbit by a bacterial lipopolysaccharide. , 1981, European journal of pharmacology.

[69]  O. Carretero,et al.  Role of Kinins in the Acute Antihypertensive Effect of the Converting Enzyme Inhibitor, Captopril , 1981, Hypertension.

[70]  D. Regoli,et al.  Pharmacology of bradykinin and related kinins. , 1980, Advances in experimental medicine and biology.

[71]  K. Malik,et al.  Relationships between the kallikrein-kinin and prostaglandin systems. , 1979, Life sciences.

[72]  J. C. Romero,et al.  The effect of indomethacin and other anti-inflammatory drugs on the renin-angiotensin system. , 1976, The Journal of clinical investigation.

[73]  Itskovitz Hd,et al.  Modulation and mediation of the action of the renal kallikrein-kinin system by prostaglandins. , 1976, Federation proceedings.

[74]  J. Brown,et al.  Acute renal failure, tubular necrosis, and myocardial infarction induced in the rabbit by intravenous angiotensin II. , 1971, Lancet.

[75]  L. Greene,et al.  POTENTIAL SCREENING TEST FOR DETECTION OF OVERACTIVITY OF RENIN-ANGIOTENSIN SYSTEM , 1971 .

[76]  E. G. Erdös,et al.  A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. , 1970, Biochimica et biophysica acta.

[77]  E. G. Erdös,et al.  Bradykinin, Kallidin and Kallikrein , 1970, Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie.

[78]  M. Rocha e Silva,et al.  Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. , 1949, The American journal of physiology.

[79]  欧阳珍 Role of the N , 2009 .

[80]  H. Gavras,et al.  Angiotensin-Converting Enzyme Inhibition After Experimental Myocardial Infarct Role of the Kinin B 1 and B 2 Receptors , 2008 .

[81]  H. Gavras Angiotensin-Converting Enzyme Inhibition and the Heart , 2005 .

[82]  H. Gavras,et al.  Arterial compliance changes in diabetic normotensive patients after angiotensin-converting enzyme inhibition therapy , 2005 .

[83]  O. Carretero,et al.  Role of nitric oxide in the control of cardiac oxygen consumption in B(2)-kinin receptor knockout mice. , 1999, Hypertension.

[84]  O. Carretero,et al.  Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. , 1996, Hypertension.

[85]  H. Gavras,et al.  Augmentation of coronary blood flow by ACE inhibition: role of angiotensin and bradykinin. , 1995, Clinical and experimental hypertension.

[86]  O. Carretero,et al.  Renal kallikrein-kinin system. , 1986, Kidney international.

[87]  A. Rebuzzi,et al.  [Renal kallikrein-kinin system and arterial pressure]. , 1981, Giornale italiano di cardiologia.

[88]  I. Mills Renal Kallikrein and Regulation of Blood Pressure in Man , 1979 .