Solar Particle Acceleration Radiation and Kinetics (SPARK)

Energetic particles are critical components of plasma populations found throughout the universe. In many cases particles are accelerated to relativistic energies and represent a substantial fraction of the total energy of the system, thus requiring extremely efficient acceleration processes. The production of accelerated particles also appears coupled to magnetic field evolution in astrophysical plasmas through the turbulent magnetic fields produced by diffusive shock acceleration. Particle acceleration is thus a key component in helping to understand the origin and evolution of magnetic structures in, e.g. galaxies. The proximity of the Sun and the range of high-resolution diagnostics available within the solar atmosphere offers unique opportunities to study the processes involved in particle acceleration through the use of a combination of remote sensing observations of the radiative signatures of accelerated particles, and of their plasma and magnetic environment. The SPARK concept targets the broad range of energy, spatial and temporal scales over which particle acceleration occurs in the solar atmosphere, in order to determine how and where energetic particles are accelerated. SPARK combines highly complementary imaging and spectroscopic observations of radiation from energetic electrons, protons and ions set in their plasma and magnetic context. The payload comprises focusing-optics X-ray imaging covering the range from 1 to 60 keV; indirect HXR imaging and spectroscopy from 5 to 200 keV, γ-ray spectroscopic imaging with high-resolution LaBr3 scintillators, and photometry and source localisation at far-infrared wavelengths. The plasma environment of the regions of acceleration and interaction will be probed using soft X-ray imaging of the corona and vector magnetography of the photosphere and chromosphere. SPARK is designed for solar research. However, in addition it will be able to provide exciting new insights into the origin of particle acceleration in other regimes, including terrestrial gamma-ray flashes (TGF), the origin of γ-ray bursts, and the possible existence of axions.

[1]  R. Ramaty,et al.  Gamma Rays from Solar Flares , 2000 .

[2]  R. Kallenbach,et al.  Hydromagnetic Wave Excitation Upstream of an Interplanetary Traveling Shock , 2004 .

[3]  M. A. Weber,et al.  Highly Energetic Physical Processes and Mechanisms for Emission from Astrophysical Plasmas: IAU Symposium 195 , 2000 .

[4]  Peter Mao,et al.  The Nuclear Spectroscopic Telescope Array (NuSTAR) , 2010, Astronomical Telescopes + Instrumentation.

[5]  R. Murphy,et al.  Gamma radiation from flare-accelerated particles impacting the sun , 2013 .

[6]  A. MacKinnon,et al.  High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum , 1994 .

[7]  R. Sunyaev,et al.  Hard X-ray and gamma-ray observations of an electron dominated event associated with an occulted solar flare , 1999 .

[8]  S. Krucker,et al.  Radio Submillimeter and γ-Ray Observations of the 2003 October 28 Solar Flare , 2008 .

[9]  Richard A. Schwartz,et al.  Compton backscattered and primary X-rays from solar flares: angle dependent Green's function correction for photospheric albedo , 2005 .

[10]  R. Ramaty,et al.  On the origin of solar flare microwave radio bursts , 1967 .

[11]  J. Grove,et al.  Accelerated Particle Composition and Energetics and Ambient Abundances from Gamma-Ray Spectroscopy of the 1991 June 4 Solar Flare , 1997 .

[12]  E. Chupp,et al.  Gamma-Rays and Neutrons as a Probe of Flare Proton Spectra: the Solar Flare of 11 June 1991 , 1999 .

[13]  E. Kalemci,et al.  Gamma-Ray Polarimetry of Two X-Class Solar Flares , 2005, astro-ph/0510588.

[14]  Eric D. Carlson,et al.  Pseudoscalar conversion and X-rays from the sun , 1996 .

[15]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[16]  Ernest Hilsenrath,et al.  Observations of the solar irradiance in the 200-350 nm interval during the ATLAS-1 Mission: A comparison among three sets of measurements-SSBUV, SOLSPEC, and SUSIM , 1996 .

[17]  J. Raulin,et al.  Evidence that Synchrotron Emission from Nonthermal Electrons Produces the Increasing Submillimeter Spectral Component in Solar Flares , 2007 .

[18]  L. Driel-Gesztelyi,et al.  Magnetic Activity Associated With Radio Noise Storms , 2000 .

[19]  R. Sunyaev,et al.  A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare , 1998 .

[20]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[21]  J. Raulin,et al.  Acceleration of electrons outside flares: evidence for coronal evolution and height-extended energy release during noise storms , 1994 .

[22]  A. MacKinnon Coulomb collisional precipitation of fast electrons in solar flares , 1988 .

[23]  Pascal Saint-Hilaire,et al.  The Focusing Optics X-ray Solar Imager (FOXSI) , 2009, Optical Engineering + Applications.

[24]  Gordon J. Hurford,et al.  Gamma-Ray Imaging of the 2003 October/November Solar Flares , 2006 .

[25]  J. Ryan,et al.  High energy neutron and pion-decay gamma-ray emissions from solar flares , 2009 .

[26]  H. Hudson,et al.  A Hard X-ray Two-Ribbon Flare Observed with Yohkoh/HXT , 2001 .

[27]  H. Hudson,et al.  CONSTRAINING THE HARD X-RAY PROPERTIES OF THE QUIET SUN WITH NEW RHESSI OBSERVATIONS , 2010, 1009.2918.

[28]  P. Nieminen,et al.  Deduced spectrum of interacting protons accelerated after the impulsive phase of the 15 June 1991 solar flare , 1998 .

[29]  J. Brown,et al.  Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[30]  Solar flare hard X-ray spectra possibly inconsistent with the collisional thick target model , 2005, astro-ph/0508418.

[31]  Joaquim E. R. Costa,et al.  A New Solar Burst Spectral Component Emitting Only in the Terahertz Range , 2004 .

[32]  O. Romberg,et al.  Solar magnetism eXplorer (SolmeX) , 2011, 1108.5304.

[33]  J. McTiernan RHESSI/GOES OBSERVATIONS OF THE NONFLARING SUN FROM 2002 TO 2006 , 2009 .

[34]  B. Hazelton,et al.  First RHESSI terrestrial gamma ray flash catalog , 2009 .

[35]  J. Leach,et al.  The impulsive phase of solar flares. II - Characteristics of the hard X-rays , 1983 .

[36]  H. Zirin,et al.  Neutron and electromagnetic emissions during the 1990 May 24 solar flare , 1994 .

[37]  R. Murphy,et al.  Solar Atmospheric Abundances and Energy Content in Flare-accelerated Ions from Gamma-Ray Spectroscopy , 1995 .

[38]  Lindsay Glesener,et al.  The Focusing Optics X-ray Solar Imager , 2009 .

[39]  Chang Liu,et al.  RECONNECTION ELECTRIC FIELD AND HARDNESS OF X-RAY EMISSION OF SOLAR FLARES , 2009, 0903.3968.

[40]  Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares , 1994 .

[41]  J. C. del Toro Iniesta,et al.  Sunrise: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS , 2010, 1008.3460.

[42]  S. Kane,et al.  Solar hard x-ray microflares , 1984 .

[43]  A. MacKinnon,et al.  High energy particles during the large solar flare of 1990 May 24: X/γ ray observations. , 2003 .

[44]  A. MacKinnon,et al.  Properties of Energetic Ions in the Solar Atmosphere from γ-Ray and Neutron Observations , 2011, 1110.2432.

[45]  A. Kuznetsov,et al.  Diagnostics of energetic electrons with anisotropic distributions in solar flares , 2010 .

[46]  Timothy S. Bastian,et al.  X-Ray Network Flares of the Quiet Sun , 1997 .

[47]  E. Kontar,et al.  SUB-THz RADIATION MECHANISMS IN SOLAR FLARES , 2009, 0911.5335.

[48]  J. Brown,et al.  Hard X-ray spectra and positions of solar flares observed by RHESSI: photospheric albedo, directivity and electron spectra , 2007, astro-ph/0701871.

[49]  J. Vink Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants , 2008, 0810.3680.

[50]  G. J. Hurford,et al.  Deducing Electron Properties from Hard X-ray Observations , 2011, 1110.1755.

[51]  Gordon J. Hurford,et al.  First Gamma-Ray Images of a Solar Flare , 2003 .

[52]  J. Dwyer,et al.  A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma‐ray flash observations , 2005 .

[53]  J. Ryan,et al.  Observation of the 2.223 MeV gamma-ray line on the SMM satellite - The event of 1980 June 7 , 1981 .

[54]  Ralf S. Klessen,et al.  American Institute of Physics Conference Series , 2010 .

[55]  Gordon D. Holman,et al.  Electron Bremsstrahlung Hard X-Ray Spectra, Electron Distributions, and Energetics in the 2002 July 23 Solar Flare , 2003 .

[56]  D. Mclean,et al.  Solar Radiophysics - Studies of Emission from the Sun at Metre Wavelengths , 1985 .

[57]  R. P. Lin,et al.  First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI , 2007 .

[58]  S. Christe,et al.  An intriguing solar microflare observed with RHESSI, Hinode, and TRACE , 2007, 0712.0369.

[59]  M. Aschwanden,et al.  The RHESSI Imaging Concept , 2002 .

[60]  Chang Liu,et al.  The Spatial Distribution of the Hard X-Ray Spectral Index and the Local Magnetic Reconnection Rate , 2007, 0711.1370.