Exploring Uncultured Thermophilic Archaea Hidden in Terrestrial Hot Springs

[1]  M. Ohkuma,et al.  Nanobdella aerobiophila gen. nov., sp. nov., a thermoacidophilic, obligate ectosymbiotic archaeon, and proposal of Nanobdellaceae fam. nov., Nanobdellales ord. nov. and Nanobdellia class. nov. , 2022, International journal of systematic and evolutionary microbiology.

[2]  E. Boyd,et al.  An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea , 2022, Nature Communications.

[3]  M. Ohkuma,et al.  Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses , 2022, Proceedings of the National Academy of Sciences.

[4]  Donovan H. Parks,et al.  A standardized archaeal taxonomy for the Genome Taxonomy Database , 2021, Nature Microbiology.

[5]  J. Banfield,et al.  Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways , 2021, Nature communications.

[6]  A. Lapidus,et al.  Metagenomic Data Assembly – The Way of Decoding Unknown Microorganisms , 2021, Frontiers in Microbiology.

[7]  Adrián A. Davín,et al.  A rooted phylogeny resolves early bacterial evolution , 2020, bioRxiv.

[8]  M. Ohkuma,et al.  Conexivisphaera calida gen. nov., sp. nov., a thermophilic sulfur- and iron-reducing archaeon, and proposal of Conexivisphaeraceae fam. nov., Conexivisphaerales ord. nov., and Conexivisphaeria class. nov. in the phylum Thaumarchaeota. , 2020, International journal of systematic and evolutionary microbiology.

[9]  Donovan H. Parks,et al.  Roadmap for naming uncultivated Archaea and Bacteria , 2020, Nature Microbiology.

[10]  B. Baker,et al.  Diversity, ecology and evolution of Archaea , 2020, Nature Microbiology.

[11]  D. D. Des Marais,et al.  Terrestrial Hot Spring Systems: Introduction , 2019, Astrobiology.

[12]  M. Ohkuma,et al.  Isolation and characterization of a thermophilic sulfur- and iron-reducing thaumarchaeote from a terrestrial acidic hot spring , 2019, The ISME Journal.

[13]  Rafael Bargiela,et al.  Diversity of “Ca. Micrarchaeota” in Two Distinct Types of Acidic Environments and Their Associations with Thermoplasmatales , 2019, Genes.

[14]  Tom O. Delmont,et al.  Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota , 2019, Nature Microbiology.

[15]  M. Podar,et al.  A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera tikiterensis gen. nov., sp. nov.) from a New Zealand hot spring. , 2019, Systematic and applied microbiology.

[16]  K. Kurokawa,et al.  The Relationship Between Microbial Community Structures and Environmental Parameters Revealed by Metagenomic Analysis of Hot Spring Water in the Kirishima Area, Japan , 2018, Front. Bioeng. Biotechnol..

[17]  Natalia N. Ivanova,et al.  Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis , 2018, Microbiome.

[18]  G. Olsen,et al.  The essential genome of the crenarchaeal model Sulfolobus islandicus , 2018, bioRxiv.

[19]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[20]  Md. Arafat Islam,et al.  Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil. , 2018, International journal of systematic and evolutionary microbiology.

[21]  Alexander J. Probst,et al.  Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages , 2018, Microbiome.

[22]  W. Inskeep,et al.  Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats , 2018, Nature Microbiology.

[23]  Cindy J. Castelle,et al.  Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life , 2018, Cell.

[24]  B. Baker,et al.  Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota , 2017, The ISME Journal.

[25]  N. Segata,et al.  Shotgun metagenomics, from sampling to analysis , 2017, Nature Biotechnology.

[26]  S. Gribaldo,et al.  The growing tree of Archaea: new perspectives on their diversity, evolution and ecology , 2017, The ISME Journal.

[27]  Y. Wolf,et al.  ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ , 2017, Nature Communications.

[28]  Philipp C. Münch,et al.  Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms , 2017, Scientific Reports.

[29]  D. M. Ward,et al.  The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses , 2017, Front. Microbiol..

[30]  Gergely J. Szöllősi,et al.  Integrative modeling of gene and genome evolution roots the archaeal tree of life , 2017, Proceedings of the National Academy of Sciences.

[31]  Malcolm R. Walter,et al.  Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits , 2017, Nature Communications.

[32]  J. Amend,et al.  Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids , 2017, Scientific Data.

[33]  A. Kano,et al.  Transition of microbiological and sedimentological features associated with the geochemical gradient in a travertine mound in northern Sumatra, Indonesia , 2016 .

[34]  Filipa L. Sousa,et al.  The physiology and habitat of the last universal common ancestor , 2016, Nature Microbiology.

[35]  Richard J. Giannone,et al.  Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment , 2016, Nature Communications.

[36]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[37]  R. Ortiz-Álvarez,et al.  High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. , 2016, Environmental microbiology reports.

[38]  Amrita Pati,et al.  Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs , 2016, Nature Communications.

[39]  S. Tringe,et al.  Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer' community , 2015, The ISME Journal.

[40]  Kenneth H. Williams,et al.  Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling , 2015, Current Biology.

[41]  Purificación López-García,et al.  Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota , 2014, Genome biology and evolution.

[42]  W. Shu,et al.  Microbial communities evolve faster in extreme environments , 2014, Scientific Reports.

[43]  K. Schleifer,et al.  Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences , 2014, Nature Reviews Microbiology.

[44]  A. Spang,et al.  ‘Geoarchaeote NAG1’ is a deeply rooting lineage of the archaeal order Thermoproteales rather than a new phylum , 2014, The ISME Journal.

[45]  T. Yamanaka,et al.  Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream , 2013 .

[46]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[47]  Keiko Watanabe,et al.  Archaeal Community Structures in the Solfataric Acidic Hot Springs with Different Temperatures and Elemental Compositions , 2013, Archaea.

[48]  E. Koonin,et al.  Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park , 2013, Biology Direct.

[49]  J. Dodsworth,et al.  Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities , 2012, The ISME Journal.

[50]  S. Tringe,et al.  Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park , 2012, The ISME Journal.

[51]  R. Lasken Genomic sequencing of uncultured microorganisms from single cells , 2012, Nature Reviews Microbiology.

[52]  Thijs J. G. Ettema,et al.  The archaeal 'TACK' superphylum and the origin of eukaryotes. , 2011, Trends in microbiology.

[53]  A. Yamagishi,et al.  Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. , 2011, FEMS microbiology letters.

[54]  Andreas Richter,et al.  Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil , 2011, Proceedings of the National Academy of Sciences.

[55]  E. Shock,et al.  The transition to microbial photosynthesis in hot spring ecosystems , 2011 .

[56]  B. Fouke Hot‐spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA , 2011 .

[57]  M. Hattori,et al.  Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group , 2010, Nucleic acids research.

[58]  W. Wade,et al.  Strategies for culture of 'unculturable' bacteria. , 2010, FEMS microbiology letters.

[59]  Christina Toft,et al.  Evolutionary microbial genomics: insights into bacterial host adaptation , 2010, Nature Reviews Genetics.

[60]  Doug Hyatt,et al.  Enigmatic, ultrasmall, uncultivated Archaea , 2010, Proceedings of the National Academy of Sciences.

[61]  Markus J. Herrgård,et al.  Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function , 2010, PloS one.

[62]  T. Yamanaka,et al.  Culture-Independent Estimation of Optimal and Maximum Growth Temperatures of Archaea in Subsurface Habitats Based on the G+C Content in 16S rRNA Gene Sequences , 2010 .

[63]  Satoshi Nakagawa,et al.  Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation , 2008, Proceedings of the National Academy of Sciences.

[64]  A. Casanueva,et al.  Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments , 2008, Extremophiles.

[65]  E. Koonin,et al.  A korarchaeal genome reveals insights into the evolution of the Archaea , 2008, Proceedings of the National Academy of Sciences.

[66]  M. Adams,et al.  Hydrogenases of the Model Hyperthermophiles , 2008, Annals of the New York Academy of Sciences.

[67]  P. Forterre,et al.  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota , 2008, Nature Reviews Microbiology.

[68]  M. Könneke,et al.  Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol , 2022 .

[69]  Michael Wagner,et al.  A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring , 2008, Proceedings of the National Academy of Sciences.

[70]  Philip Hugenholtz,et al.  Lineages of Acidophilic Archaea Revealed by Community Genomic Analysis , 2006, Science.

[71]  Yohey Suzuki,et al.  Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. , 2005, Environmental microbiology.

[72]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[73]  Dieter Söll,et al.  The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. Lovley,et al.  Extending the Upper Temperature Limit for Life , 2003, Science.

[75]  Hervé Philippe,et al.  Phylogeny: A non-hyperthermophilic ancestor for Bacteria , 2002, Nature.

[76]  Harald Huber,et al.  A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont , 2002, Nature.

[77]  H. Huber,et al.  Detection of 16S rDNA sequences representing the novel phylum "Nanoarchaeota": indication for a wide distribution in high temperature biotopes. , 2002, Systematic and applied microbiology.

[78]  Toshio Iwasaki,et al.  Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan , 2002, Extremophiles.

[79]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[80]  K. Horikoshi,et al.  Genetic diversity of archaea in deep-sea hydrothermal vent environments. , 1999, Genetics.

[81]  Y. Sako,et al.  A molecular view of archaeal diversity in marine and terrestrial hot water environments , 1999 .

[82]  Tadashi Maruyama,et al.  Aeropyrum pernix gen. nov., sp. nov., a Novel Aerobic Hyperthermophilic Archaeon Growing at Temperatures up to 100°C , 1996 .

[83]  N. Pace,et al.  Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Hans-Peter Klenk,et al.  Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea , 1996 .

[85]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[86]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Fournier Chemical geothermometers and mixing models for geothermal systems , 1977 .

[88]  A. H. Truesdell,et al.  An empirical NaKCa geothermometer for natural waters , 1973 .